Skip to content

Commit bbaba37

Browse files
authored
[Term Entry] Python NumPy - ndarray: shape
* Add NumPy ndarray shape term entry (#7824) * Enhance documentation for ndarray shape attribute Added detailed explanations for parameters and return values of the shape attribute. Updated examples and FAQs for clarity. * Fix syntax for ndarray shape reference * Minor changes ---------
1 parent 3abafaf commit bbaba37

File tree

1 file changed

+84
-0
lines changed
  • content/numpy/concepts/ndarray/terms/shape

1 file changed

+84
-0
lines changed
Lines changed: 84 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,84 @@
1+
---
2+
Title: '.shape'
3+
Description: 'Returns a tuple representing the dimensions of an ndarray.'
4+
Subjects:
5+
- 'Computer Science'
6+
- 'Data Science'
7+
Tags:
8+
- 'Arrays'
9+
- 'Data Structures'
10+
- 'NumPy'
11+
- 'Tuples'
12+
CatalogContent:
13+
- 'learn-python-3'
14+
- 'paths/data-science'
15+
---
16+
17+
The **`.shape`** attribute of a NumPy `ndarray` returns a [tuple](https://www.codecademy.com/resources/docs/python/tuples) of integers specifying the size of the array in each dimension. It provides information about the structure and layout of the array.
18+
19+
## Syntax
20+
21+
```pseudo
22+
ndarray.shape
23+
```
24+
25+
**Parameters:**
26+
27+
This attribute does not take any parameters.
28+
29+
**Return value:**
30+
31+
Returns a tuple of integers representing the size of the array along each dimension.
32+
33+
- For a 1D array, it returns a single value (e.g., `(5,)`).
34+
- For a 2D array, it returns two values i.e. rows and columns (e.g., `(3, 4)`).
35+
- For higher dimensions, it includes one integer per axis.
36+
37+
## Example
38+
39+
The following example demonstrates how to use the `.shape` attribute to get the dimensions of different ndarrays:
40+
41+
```py
42+
import numpy as np
43+
44+
# 1D array
45+
arr_1d = np.array([1, 2, 3, 4, 5])
46+
print(arr_1d.shape)
47+
48+
# 2D array
49+
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])
50+
print(arr_2d.shape)
51+
52+
# 3D array
53+
arr_3d = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
54+
print(arr_3d.shape)
55+
```
56+
57+
The output for the above code will be:
58+
59+
```shell
60+
(5,)
61+
(2, 3)
62+
(2, 2, 2)
63+
```
64+
65+
## Codebyte Example
66+
67+
The following codebyte example shows how to use the `.shape` attribute and modify array dimensions:
68+
69+
```codebyte/python
70+
import numpy as np
71+
72+
# Create a 1D array
73+
original_array = np.array([1, 2, 3, 4, 5, 6])
74+
print("Original shape:", original_array.shape)
75+
76+
# Reshape to 2D array
77+
reshaped_array = original_array.reshape(2, 3)
78+
print("Reshaped to 2D:", reshaped_array.shape)
79+
print(reshaped_array)
80+
81+
# Reshape to 3D array
82+
reshaped_3d = original_array.reshape(2, 3, 1)
83+
print("Reshaped to 3D:", reshaped_3d.shape)
84+
```

0 commit comments

Comments
 (0)