|
| 1 | +# SPDX-FileCopyrightText: 2021-present M. Coleman, J. Cook, F. Franza |
| 2 | +# SPDX-FileCopyrightText: 2021-present I.A. Maione, S. McIntosh |
| 3 | +# SPDX-FileCopyrightText: 2021-present J. Morris, D. Short |
| 4 | +# |
| 5 | +# SPDX-License-Identifier: LGPL-2.1-or-later |
| 6 | + |
| 7 | +""" |
| 8 | +This is a complex constrained optimisation problem from Colville |
| 9 | +Found in chapter 4 here: https://apps.dtic.mil/sti/tr/pdf/AD0679037.pdf |
| 10 | +Note that there is a typo in one of the equality constraints. |
| 11 | +See https://courses.mai.liu.se/GU/TAOP04/process-optimization.pdf |
| 12 | +""" |
| 13 | + |
| 14 | +import numpy as np |
| 15 | +import pytest |
| 16 | + |
| 17 | +from bluemira.optimisation import Algorithm, optimise |
| 18 | + |
| 19 | + |
| 20 | +class AlkylationData: |
| 21 | + c1 = 0.063 |
| 22 | + c2 = 5.04 |
| 23 | + c3 = 0.035 |
| 24 | + c4 = 10.0 |
| 25 | + c5 = 3.36 |
| 26 | + d4l = 99.0 / 100.0 |
| 27 | + d4u = 100.0 / 99.0 |
| 28 | + d7l = 99.0 / 100.0 |
| 29 | + d7u = 100.0 / 99.0 |
| 30 | + d9l = 9.0 / 10.0 |
| 31 | + d9u = 10.0 / 9.0 |
| 32 | + d10l = 99.0 / 100.0 |
| 33 | + d10u = 100.0 / 99.0 |
| 34 | + dimension = 10 |
| 35 | + lower_bounds = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 85.0, 90.0, 3.0, 1.2, 145.0]) |
| 36 | + upper_bounds = np.array([ |
| 37 | + 2000.0, |
| 38 | + 16000.0, |
| 39 | + 120.0, |
| 40 | + 5000.0, |
| 41 | + 2000.0, |
| 42 | + 93.0, |
| 43 | + 95.0, |
| 44 | + 12.0, |
| 45 | + 4.0, |
| 46 | + 162.0, |
| 47 | + ]) |
| 48 | + suggested_x0 = np.array([ |
| 49 | + 1745.0, |
| 50 | + 12000.0, |
| 51 | + 110.0, |
| 52 | + 3048.0, |
| 53 | + 1974.0, |
| 54 | + 89.2, |
| 55 | + 92.8, |
| 56 | + 8.0, |
| 57 | + 3.6, |
| 58 | + 145.0, |
| 59 | + ]) |
| 60 | + # Given to 1DP |
| 61 | + true_x = np.array([ |
| 62 | + 1698.0, |
| 63 | + 15818.0, |
| 64 | + 54.1, |
| 65 | + 3031.0, |
| 66 | + 2000.0, |
| 67 | + 90.1, |
| 68 | + 95.0, |
| 69 | + 10.5, |
| 70 | + 1.6, |
| 71 | + 154.0, |
| 72 | + ]) |
| 73 | + # Given to 0DP |
| 74 | + true_f_x = 1769.0 |
| 75 | + |
| 76 | + |
| 77 | +ALKYLATION_DATA = AlkylationData() |
| 78 | + |
| 79 | + |
| 80 | +def f_objective(x): |
| 81 | + """ |
| 82 | + This is a maximisation objective, so we flip the sign. |
| 83 | + """ |
| 84 | + return ( |
| 85 | + -ALKYLATION_DATA.c1 * x[3] * x[6] |
| 86 | + + ALKYLATION_DATA.c2 * x[0] |
| 87 | + + ALKYLATION_DATA.c3 * x[1] |
| 88 | + + ALKYLATION_DATA.c4 * x[2] |
| 89 | + + ALKYLATION_DATA.c5 * x[4] |
| 90 | + ) |
| 91 | + |
| 92 | + |
| 93 | +def df_objective(x): |
| 94 | + grad = np.zeros(ALKYLATION_DATA.dimension) |
| 95 | + grad[0] = ALKYLATION_DATA.c2 |
| 96 | + grad[1] = ALKYLATION_DATA.c3 |
| 97 | + grad[2] = ALKYLATION_DATA.c4 |
| 98 | + grad[3] = -ALKYLATION_DATA.c1 * x[6] |
| 99 | + grad[4] = ALKYLATION_DATA.c5 |
| 100 | + grad[6] = -ALKYLATION_DATA.c1 * x[3] |
| 101 | + return grad |
| 102 | + |
| 103 | + |
| 104 | +def f_equality1(x): |
| 105 | + return 1.22 * x[3] - x[0] - x[4] |
| 106 | + |
| 107 | + |
| 108 | +def df_equality1(_x): |
| 109 | + grad = np.zeros(ALKYLATION_DATA.dimension) |
| 110 | + grad[0] = -1.0 |
| 111 | + grad[3] = 1.22 |
| 112 | + grad[4] = -1.0 |
| 113 | + return grad |
| 114 | + |
| 115 | + |
| 116 | +def f_equality2(x): |
| 117 | + # There is a typo where I found this orginally... |
| 118 | + return 98_000.0 * x[2] / (x[3] * x[8] + 1000.0 * x[2]) - x[5] |
| 119 | + |
| 120 | + |
| 121 | +def df_equality2(x): |
| 122 | + grad = np.zeros(ALKYLATION_DATA.dimension) |
| 123 | + grad[2] = (98_000.0 * x[3] * x[8]) / (x[3] * x[8] + 1000.0 * x[2]) ** 2 |
| 124 | + grad[3] = -98_000.0 * x[2] * x[8] / (x[8] * x[3] + 1000.0 * x[2]) ** 2 |
| 125 | + grad[5] = -1.0 |
| 126 | + grad[8] = -98_000.0 * x[2] * x[3] / (x[8] * x[3] + 1000.0 * x[2]) ** 2 |
| 127 | + return grad |
| 128 | + |
| 129 | + |
| 130 | +def f_equality3(x): |
| 131 | + return (x[1] + x[4]) / x[0] - x[7] |
| 132 | + |
| 133 | + |
| 134 | +def df_equality3(x): |
| 135 | + grad = np.zeros(ALKYLATION_DATA.dimension) |
| 136 | + grad[0] = -(x[1] + x[4]) / x[0] ** 2 |
| 137 | + grad[1] = 1.0 / x[0] |
| 138 | + grad[4] = 1.0 / x[0] |
| 139 | + grad[7] = -1.0 |
| 140 | + return grad |
| 141 | + |
| 142 | + |
| 143 | +def f_inequality1(x): |
| 144 | + a = 1.12 + 0.13167 * x[7] - 0.00667 * x[7] ** 2 |
| 145 | + return -x[0] * a + ALKYLATION_DATA.d4l * x[3] |
| 146 | + |
| 147 | + |
| 148 | +def df_inequality1(x): |
| 149 | + grad = np.zeros(ALKYLATION_DATA.dimension) |
| 150 | + a = 1.12 + 0.13167 * x[7] - 0.00667 * x[7] ** 2 |
| 151 | + grad[0] = -a |
| 152 | + grad[3] = ALKYLATION_DATA.d4l |
| 153 | + grad[7] = -x[0] * (0.13167 - 2.0 * 0.00667 * x[7]) |
| 154 | + return grad |
| 155 | + |
| 156 | + |
| 157 | +def f_inequality2(x): |
| 158 | + a = 1.12 + 0.13167 * x[7] - 0.00667 * x[7] ** 2 |
| 159 | + return x[0] * a - ALKYLATION_DATA.d4u * x[3] |
| 160 | + |
| 161 | + |
| 162 | +def df_inequality2(x): |
| 163 | + grad = np.zeros(ALKYLATION_DATA.dimension) |
| 164 | + a = 1.12 + 0.13167 * x[7] - 0.00667 * x[7] ** 2 |
| 165 | + grad[0] = a |
| 166 | + grad[3] = -ALKYLATION_DATA.d4u |
| 167 | + grad[7] = x[0] * (0.13167 - 2.0 * 0.00667 * x[7]) |
| 168 | + return grad |
| 169 | + |
| 170 | + |
| 171 | +def f_inequality3(x): |
| 172 | + return ( |
| 173 | + -(86.35 + 1.098 * x[7] - 0.038 * x[7] ** 2 + 0.325 * (x[5] - 89.0)) |
| 174 | + + ALKYLATION_DATA.d7l * x[6] |
| 175 | + ) |
| 176 | + |
| 177 | + |
| 178 | +def df_inequality3(x): |
| 179 | + grad = np.zeros(ALKYLATION_DATA.dimension) |
| 180 | + grad[5] = -0.325 |
| 181 | + grad[6] = ALKYLATION_DATA.d7l |
| 182 | + grad[7] = -1.098 + 2.0 * 0.038 * x[7] |
| 183 | + return grad |
| 184 | + |
| 185 | + |
| 186 | +def f_inequality4(x): |
| 187 | + return ( |
| 188 | + 86.35 + 1.098 * x[7] - 0.038 * x[7] ** 2 + 0.325 * (x[5] - 89.0) |
| 189 | + ) - ALKYLATION_DATA.d7u * x[6] |
| 190 | + |
| 191 | + |
| 192 | +def df_inequality4(x): |
| 193 | + grad = np.zeros(ALKYLATION_DATA.dimension) |
| 194 | + grad[5] = 0.325 |
| 195 | + grad[6] = -ALKYLATION_DATA.d7u |
| 196 | + grad[7] = 1.098 - 2.0 * 0.038 * x[7] |
| 197 | + return grad |
| 198 | + |
| 199 | + |
| 200 | +def f_inequality5(x): |
| 201 | + return -(35.82 - 0.222 * x[9]) + ALKYLATION_DATA.d9l * x[8] |
| 202 | + |
| 203 | + |
| 204 | +def df_inequality5(_x): |
| 205 | + grad = np.zeros(ALKYLATION_DATA.dimension) |
| 206 | + grad[8] = ALKYLATION_DATA.d9l |
| 207 | + grad[9] = 0.222 |
| 208 | + return grad |
| 209 | + |
| 210 | + |
| 211 | +def f_inequality6(x): |
| 212 | + return (35.82 - 0.222 * x[9]) - ALKYLATION_DATA.d9u * x[8] |
| 213 | + |
| 214 | + |
| 215 | +def df_inequality6(_x): |
| 216 | + grad = np.zeros(ALKYLATION_DATA.dimension) |
| 217 | + grad[8] = -ALKYLATION_DATA.d9u |
| 218 | + grad[9] = -0.222 |
| 219 | + return grad |
| 220 | + |
| 221 | + |
| 222 | +def f_inequality7(x): |
| 223 | + return -(-133.0 + 3.0 * x[6]) + ALKYLATION_DATA.d10l * x[9] |
| 224 | + |
| 225 | + |
| 226 | +def df_inequality7(_x): |
| 227 | + grad = np.zeros(ALKYLATION_DATA.dimension) |
| 228 | + grad[6] = -3.0 |
| 229 | + grad[9] = ALKYLATION_DATA.d10l |
| 230 | + return grad |
| 231 | + |
| 232 | + |
| 233 | +def f_inequality8(x): |
| 234 | + return (-133.0 + 3.0 * x[6]) - ALKYLATION_DATA.d10u * x[9] |
| 235 | + |
| 236 | + |
| 237 | +def df_inequality8(_x): |
| 238 | + grad = np.zeros(ALKYLATION_DATA.dimension) |
| 239 | + grad[6] = 3.0 |
| 240 | + grad[9] = -ALKYLATION_DATA.d10u |
| 241 | + return grad |
| 242 | + |
| 243 | + |
| 244 | +def f_inequalities(x): |
| 245 | + return np.array([ |
| 246 | + f_inequality1(x), |
| 247 | + f_inequality2(x), |
| 248 | + f_inequality3(x), |
| 249 | + f_inequality4(x), |
| 250 | + f_inequality5(x), |
| 251 | + f_inequality6(x), |
| 252 | + f_inequality7(x), |
| 253 | + f_inequality8(x), |
| 254 | + ]) |
| 255 | + |
| 256 | + |
| 257 | +def df_inequalities(x): |
| 258 | + return np.array([ |
| 259 | + df_inequality1(x), |
| 260 | + df_inequality2(x), |
| 261 | + df_inequality3(x), |
| 262 | + df_inequality4(x), |
| 263 | + df_inequality5(x), |
| 264 | + df_inequality6(x), |
| 265 | + df_inequality7(x), |
| 266 | + df_inequality8(x), |
| 267 | + ]) |
| 268 | + |
| 269 | + |
| 270 | +@pytest.mark.parametrize( |
| 271 | + "algorithm", |
| 272 | + [ |
| 273 | + Algorithm.SLSQP, |
| 274 | + Algorithm.SLSQP_SCIPY, |
| 275 | + Algorithm.COBYLA, |
| 276 | + Algorithm.COBYLA_SCIPY, |
| 277 | + Algorithm.COBYQA, |
| 278 | + ], |
| 279 | +) |
| 280 | +def test_alkylation_problem(algorithm): |
| 281 | + result = optimise( |
| 282 | + f_objective, |
| 283 | + x0=ALKYLATION_DATA.suggested_x0, |
| 284 | + df_objective=df_objective, |
| 285 | + eq_constraints=[ |
| 286 | + { |
| 287 | + "f_constraint": f_equality1, |
| 288 | + "df_constraint": df_equality1, |
| 289 | + "tolerance": np.array([1e-6]), |
| 290 | + }, |
| 291 | + { |
| 292 | + "f_constraint": f_equality2, |
| 293 | + "df_constraint": df_equality2, |
| 294 | + "tolerance": np.array([1e-6]), |
| 295 | + }, |
| 296 | + { |
| 297 | + "f_constraint": f_equality3, |
| 298 | + "df_constraint": df_equality3, |
| 299 | + "tolerance": np.array([1e-6]), |
| 300 | + }, |
| 301 | + ], |
| 302 | + ineq_constraints=[ |
| 303 | + { |
| 304 | + "f_constraint": f_inequalities, |
| 305 | + "df_constraint": df_inequalities, |
| 306 | + "tolerance": 1e-6 * np.ones(8), |
| 307 | + } |
| 308 | + ], |
| 309 | + bounds=(ALKYLATION_DATA.lower_bounds, ALKYLATION_DATA.upper_bounds), |
| 310 | + algorithm=algorithm, |
| 311 | + opt_conditions={"max_eval": 5000, "ftol_rel": 1e-9}, |
| 312 | + ) |
| 313 | + |
| 314 | + assert np.round(abs(result.f_x)) == ALKYLATION_DATA.true_f_x |
| 315 | + np.testing.assert_allclose( |
| 316 | + np.round(result.x, decimals=1), |
| 317 | + ALKYLATION_DATA.true_x, |
| 318 | + atol=0.0, |
| 319 | + rtol=0.0033, |
| 320 | + ) |
0 commit comments