Skip to content

Commit 485e0be

Browse files
committed
feat: 🎸 add six LTSF baselines (thanks to @superarthurlx)
1 parent d764add commit 485e0be

File tree

10 files changed

+22
-15
lines changed

10 files changed

+22
-15
lines changed

README.md

Lines changed: 10 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -40,11 +40,12 @@
4040

4141
$\text{BasicTS}^{+}$ (**Basic** **T**ime **S**eries) is a benchmark library and toolkit designed for time series forecasting. It now supports a wide range of tasks and datasets, including spatial-temporal forecasting and long-term time series forecasting. It covers various types of algorithms such as statistical models, machine learning models, and deep learning models, making it an ideal tool for developing and evaluating time series forecasting models. You can find detailed tutorials in [Getting Started](./tutorial/getting_started.md).
4242

43+
🎉 **Update (June 2025):** Adds six LTSF baselines: CARD, TimeXer, Bi-Mamba, ModernTCN, S-D-Mamba, and S4.
44+
4345
🎉 **Update (May 2025):** BasicTS now supports training universal forecasting models—such as **TimeMoE** and **ChronosBolt**—with the [BLAST](https://arxiv.org/abs/2505.17871) corpus. BLAST enables **faster convergence**, **notable reductions in computational cost**, and superior performance even with limited resources. See [here](./tutorial/training_with_BLAST.md).
4446

4547
If you find this project helpful, please don't forget to give it a ⭐ Star to show your support. Thank you!
4648

47-
4849
> [!IMPORTANT]
4950
> If you find this repository helpful for your work, please consider citing the following benchmarking paper:
5051
>
@@ -148,6 +149,11 @@ MOIRAI (inference) | Unified Training of Universal Time Series Forecasting Trans
148149
149150
| 📊Baseline | 📝Title | 📄Paper | 💻Code | 🏛Venue | 🎯Task |
150151
| :------------ | :------------------------------------------------------------------------------------------------------- | :----------------------------------------------------- | :---------------------------------------------------------------------------- | :--------- | :----- |
152+
| S-D-Mamba | Is Mamba Effective for Time Series Forecasting? | [Link](https://arxiv.org/abs/2403.11144v3) | [Link](https://github.com/wzhwzhwzh0921/S-D-Mamba) | NeuroComputing'24 | LTSF |
153+
| Bi-Mamba | Bi-Mamba+: Bidirectional Mamba for Time Series Forecasting | [Link](https://arxiv.org/abs/2404.15772) | [Link](https://github.com/Leopold2333/Bi-Mamba4TS) | arXiv'24 | LTSF |
154+
| ModernTCN | ModernTCN: A Modern Pure Convolution Structure for General Time Series Analysis | [Link](https://openreview.net/forum?id=vpJMJerXHU) | [Link](https://github.com/luodhhh/ModernTCN) | ICLR'24 | LTSF |
155+
| TimeXer | TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables | [Link](https://arxiv.org/abs/2402.19072) | [Link](https://github.com/thuml/TimeXer) | NeurIPS'24 | LTSF |
156+
| CARD | CARD: Channel Aligned Robust Blend Transformer for Time Series Forecasting | [Link](https://arxiv.org/abs/2305.12095) | [Link](https://github.com/wxie9/CARD) | ICLR'24 | LTSF |
151157
| SOFTS | SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion | [Link](https://arxiv.org/pdf/2404.14197) | [Link](https://github.com/Secilia-Cxy/SOFTS) | NeurIPS'24 | LTSF |
152158
| CATS | Are Self-Attentions Effective for Time Series Forecasting? | [Link](https://arxiv.org/pdf/2405.16877) | [Link](https://github.com/dongbeank/CATS) | NeurIPS'24 | LTSF |
153159
| Sumba | Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics | [Link](https://xiucheng.org/assets/pdfs/nips24-sumba.pdf) | [Link](https://github.com/chenxiaodanhit/Sumba/) | NeurIPS'24 | LTSF |
@@ -172,6 +178,7 @@ MOIRAI (inference) | Unified Training of Universal Time Series Forecasting Trans
172178
| NHiTS | Neural Hierarchical Interpolation for Time Series Forecasting | [Link](https://arxiv.org/abs/2201.12886) | [Link](https://github.com/cchallu/n-hits) | AAAI'23 | LTSF |
173179
| PatchTST | A Time Series is Worth 64 Words: Long-term Forecasting with Transformers | [Link](https://arxiv.org/abs/2211.14730) | [Link](https://github.com/yuqinie98/PatchTST) | ICLR'23 | LTSF |
174180
| TiDE | Long-term Forecasting with TiDE: Time-series Dense Encoder | [Link](https://arxiv.org/abs/2304.08424) | [Link](https://github.com/lich99/TiDE) | TMLR'23 | LTSF |
181+
| S4 | Efficiently Modeling Long Sequences with Structured State Spaces | [Link](https://openreview.net/pdf?id=uYLFoz1vlAC) | [Link](https://github.com/state-spaces/s4) | ICLR'22 | LTSF |
175182
| TimesNet | Temporal 2D-Variation Modeling for General Time Series Analysis | [Link](https://openreview.net/pdf?id=ju_Uqw384Oq) | [Link](https://github.com/thuml/TimesNet) | ICLR'23 | LTSF |
176183
| Triformer | Triangular, Variable-Specific Attentions for Long Sequence Multivariate Time Series Forecasting | [Link](https://arxiv.org/abs/2204.13767) | [Link](https://github.com/razvanc92/triformer) | IJCAI'22 | LTSF |
177184
| NSformer | Exploring the Stationarity in Time Series Forecasting | [Link](https://arxiv.org/abs/2205.14415) | [Link](https://github.com/thuml/Nonstationary_Transformers) | NeurIPS'22 | LTSF |
@@ -289,9 +296,9 @@ Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/d
289296
290297
This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!
291298
292-
## ⭐ Star History
299+
<!-- ## ⭐ Star History
293300
294-
[![Star History Chart](https://api.star-history.com/svg?repos=GestaltCogTeam/BasicTS&type=Date)](https://star-history.com/#GestaltCogTeam/BasicTS&Date)
301+
[![Star History Chart](https://api.star-history.com/svg?repos=GestaltCogTeam/BasicTS&type=Date)](https://star-history.com/#GestaltCogTeam/BasicTS&Date) -->
295302
296303
## 🔗 Acknowledgement
297304

README_CN.md

Lines changed: 10 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -41,6 +41,8 @@
4141

4242
$\text{BasicTS}^{+}$ (**Basic** **T**ime **S**eries) 是一个面向时间序列预测的基准库和工具箱,现已支持时空预测、长序列预测等多种任务与数据集,涵盖统计模型、机器学习模型、深度学习模型等多类算法,为开发和评估时间序列预测模型提供了理想的工具。你可以在[快速上手](./tutorial/getting_started_cn.md)找到详细的教程。
4343

44+
🎉 **更新(2025年6月):** 添加了6个长序列预测基线:CARD、TimeXer、Bi-Mamba、ModernTCN、S-D-Mamba、S4。
45+
4446
🎉 **更新(2025年5月):** BasicTS 现已支持使用 [BLAST](https://arxiv.org/abs/2505.17871) 语料库训练通用预测模型(例如 **TimeMoE****ChronosBolt**)。BLAST 能够实现 **更快的收敛速度****显著降低计算成本**,并且即使在资源有限的情况下也能获得卓越性能。[查看](./tutorial/training_with_BLAST_cn.md)
4547

4648
如果你觉得这个项目对你有帮助,别忘了给个⭐Star支持一下,非常感谢!
@@ -149,6 +151,11 @@ MOIRAI (inference) | Unified Training of Universal Time Series Forecasting Trans
149151
150152
| 📊Baseline | 📝Title | 📄Paper | 💻Code | 🏛Venue | 🎯Task |
151153
| :------------ | :------------------------------------------------------------------------------------------------------- | :----------------------------------------------------- | :---------------------------------------------------------------------------- | :--------- | :----- |
154+
| S-D-Mamba | Is Mamba Effective for Time Series Forecasting? | [Link](https://arxiv.org/abs/2403.11144v3) | [Link](https://github.com/wzhwzhwzh0921/S-D-Mamba) | NeuroComputing'24 | LTSF |
155+
| Bi-Mamba | Bi-Mamba+: Bidirectional Mamba for Time Series Forecasting | [Link](https://arxiv.org/abs/2404.15772) | [Link](https://github.com/Leopold2333/Bi-Mamba4TS) | arXiv'24 | LTSF |
156+
| ModernTCN | ModernTCN: A Modern Pure Convolution Structure for General Time Series Analysis | [Link](https://openreview.net/forum?id=vpJMJerXHU) | [Link](https://github.com/luodhhh/ModernTCN) | ICLR'24 | LTSF |
157+
| TimeXer | TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables | [Link](https://arxiv.org/abs/2402.19072) | [Link](https://github.com/thuml/TimeXer) | NeurIPS'24 | LTSF |
158+
| CARD | CARD: Channel Aligned Robust Blend Transformer for Time Series Forecasting | [Link](https://arxiv.org/abs/2305.12095) | [Link](https://github.com/wxie9/CARD) | ICLR'24 | LTSF |
152159
| SOFTS | SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion | [Link](https://arxiv.org/pdf/2404.14197) | [Link](https://github.com/Secilia-Cxy/SOFTS) | NeurIPS'24 | LTSF |
153160
| CATS | Are Self-Attentions Effective for Time Series Forecasting? | [Link](https://arxiv.org/pdf/2405.16877) | [Link](https://github.com/dongbeank/CATS) | NeurIPS'24 | LTSF |
154161
| Sumba | Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics | [Link](https://xiucheng.org/assets/pdfs/nips24-sumba.pdf) | [Link](https://github.com/chenxiaodanhit/Sumba/) | NeurIPS'24 | LTSF |
@@ -173,6 +180,7 @@ MOIRAI (inference) | Unified Training of Universal Time Series Forecasting Trans
173180
| NHiTS | Neural Hierarchical Interpolation for Time Series Forecasting | [Link](https://arxiv.org/abs/2201.12886) | [Link](https://github.com/cchallu/n-hits) | AAAI'23 | LTSF |
174181
| PatchTST | A Time Series is Worth 64 Words: Long-term Forecasting with Transformers | [Link](https://arxiv.org/abs/2211.14730) | [Link](https://github.com/yuqinie98/PatchTST) | ICLR'23 | LTSF |
175182
| TiDE | Long-term Forecasting with TiDE: Time-series Dense Encoder | [Link](https://arxiv.org/abs/2304.08424) | [Link](https://github.com/lich99/TiDE) | TMLR'23 | LTSF |
183+
| S4 | Efficiently Modeling Long Sequences with Structured State Spaces | [Link](https://openreview.net/pdf?id=uYLFoz1vlAC) | [Link](https://github.com/state-spaces/s4) | ICLR'22 | LTSF |
176184
| TimesNet | Temporal 2D-Variation Modeling for General Time Series Analysis | [Link](https://openreview.net/pdf?id=ju_Uqw384Oq) | [Link](https://github.com/thuml/TimesNet) | ICLR'23 | LTSF |
177185
| Triformer | Triangular, Variable-Specific Attentions for Long Sequence Multivariate Time Series Forecasting | [Link](https://arxiv.org/abs/2204.13767) | [Link](https://github.com/razvanc92/triformer) | IJCAI'22 | LTSF |
178186
| NSformer | Exploring the Stationarity in Time Series Forecasting | [Link](https://arxiv.org/abs/2205.14415) | [Link](https://github.com/thuml/Nonstationary_Transformers) | NeurIPS'22 | LTSF |
@@ -289,9 +297,9 @@ BasicTS 支持多种类型的数据集,涵盖时空预测、长序列预测及
289297
290298
此项目遵循 [all-contributors](https://github.com/all-contributors/all-contributors) 规范。欢迎任何形式的贡献!
291299
292-
## ⭐ Star History
300+
<!-- ## ⭐ Star History
293301
294-
[![Star History Chart](https://api.star-history.com/svg?repos=GestaltCogTeam/BasicTS&type=Date)](https://star-history.com/#GestaltCogTeam/BasicTS&Date)
302+
[![Star History Chart](https://api.star-history.com/svg?repos=GestaltCogTeam/BasicTS&type=Date)](https://star-history.com/#GestaltCogTeam/BasicTS&Date) -->
295303
296304
## 🔗 致谢
297305

baselines/BiMamba/README.md

Lines changed: 1 addition & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1 @@
1-
BiMamba additionally requires the following dependency:
2-
```bash
3-
pip install mamba_ssm
4-
````
1+
BiMamba requires `mamba_ssm` package. Please refer to the [mamba_ssm documentation](https://github.com/state-spaces/mamba).

baselines/S_Mamba/ETTm2.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -149,5 +149,4 @@
149149
CFG.EVAL = EasyDict()
150150

151151
# Evaluation parameters
152-
CFG.EVAL.HORIZONS = [12, 24, 48, 96]
153152
CFG.EVAL.USE_GPU = True # Whether to use GPU for evaluation. Default: True

baselines/S_Mamba/Electricity.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -149,5 +149,4 @@
149149
CFG.EVAL = EasyDict()
150150

151151
# Evaluation parameters
152-
CFG.EVAL.HORIZONS = [12, 24, 48, 96]
153152
CFG.EVAL.USE_GPU = True # Whether to use GPU for evaluation. Default: True

baselines/S_Mamba/README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
S-D-Mamba requires `mamba_ssm` package. Please refer to the [mamba_ssm documentation](https://github.com/state-spaces/mamba).

baselines/S_Mamba/Weather.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -149,5 +149,4 @@
149149
CFG.EVAL = EasyDict()
150150

151151
# Evaluation parameters
152-
CFG.EVAL.HORIZONS = [12, 24, 48, 96]
153152
CFG.EVAL.USE_GPU = True # Whether to use GPU for evaluation. Default: True

baselines/TimeXer/ETTm2.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -147,5 +147,4 @@
147147
CFG.EVAL = EasyDict()
148148

149149
# Evaluation parameters
150-
CFG.EVAL.HORIZONS = [12, 24, 48, 96]
151150
CFG.EVAL.USE_GPU = True # Whether to use GPU for evaluation. Default: True

baselines/TimeXer/Electricity.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -147,5 +147,4 @@
147147
CFG.EVAL = EasyDict()
148148

149149
# Evaluation parameters
150-
CFG.EVAL.HORIZONS = [12, 24, 48, 96]
151150
CFG.EVAL.USE_GPU = True # Whether to use GPU for evaluation. Default: True

baselines/TimeXer/Weather.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -147,5 +147,4 @@
147147
CFG.EVAL = EasyDict()
148148

149149
# Evaluation parameters
150-
CFG.EVAL.HORIZONS = [12, 24, 48, 96]
151150
CFG.EVAL.USE_GPU = True # Whether to use GPU for evaluation. Default: True

0 commit comments

Comments
 (0)