|
| 1 | +// Copyright 2023 Greptime Team |
| 2 | +// |
| 3 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +// you may not use this file except in compliance with the License. |
| 5 | +// You may obtain a copy of the License at |
| 6 | +// |
| 7 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +// |
| 9 | +// Unless required by applicable law or agreed to in writing, software |
| 10 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +// See the License for the specific language governing permissions and |
| 13 | +// limitations under the License. |
| 14 | + |
| 15 | +use std::borrow::Cow; |
| 16 | +use std::sync::Arc; |
| 17 | + |
| 18 | +use arrow::array::{Array, ArrayRef, AsArray, BinaryArray, LargeStringArray, StringArray}; |
| 19 | +use arrow::compute::sum; |
| 20 | +use arrow::datatypes::UInt64Type; |
| 21 | +use arrow_schema::{DataType, Field}; |
| 22 | +use datafusion_common::{Result, ScalarValue}; |
| 23 | +use datafusion_expr::{ |
| 24 | + Accumulator, AggregateUDF, Signature, SimpleAggregateUDF, TypeSignature, Volatility, |
| 25 | +}; |
| 26 | +use datafusion_functions_aggregate_common::accumulator::AccumulatorArgs; |
| 27 | +use nalgebra::{Const, DVector, DVectorView, Dyn, OVector}; |
| 28 | + |
| 29 | +use crate::scalars::vector::impl_conv::{ |
| 30 | + binlit_as_veclit, parse_veclit_from_strlit, veclit_to_binlit, |
| 31 | +}; |
| 32 | + |
| 33 | +/// The accumulator for the `vec_avg` aggregate function. |
| 34 | +#[derive(Debug, Default)] |
| 35 | +pub struct VectorAvg { |
| 36 | + sum: Option<OVector<f32, Dyn>>, |
| 37 | + count: u64, |
| 38 | +} |
| 39 | + |
| 40 | +impl VectorAvg { |
| 41 | + /// Create a new `AggregateUDF` for the `vec_avg` aggregate function. |
| 42 | + pub fn uadf_impl() -> AggregateUDF { |
| 43 | + let signature = Signature::one_of( |
| 44 | + vec![ |
| 45 | + TypeSignature::Exact(vec![DataType::Utf8]), |
| 46 | + TypeSignature::Exact(vec![DataType::LargeUtf8]), |
| 47 | + TypeSignature::Exact(vec![DataType::Binary]), |
| 48 | + ], |
| 49 | + Volatility::Immutable, |
| 50 | + ); |
| 51 | + let udaf = SimpleAggregateUDF::new_with_signature( |
| 52 | + "vec_avg", |
| 53 | + signature, |
| 54 | + DataType::Binary, |
| 55 | + Arc::new(Self::accumulator), |
| 56 | + vec![ |
| 57 | + Arc::new(Field::new("sum", DataType::Binary, true)), |
| 58 | + Arc::new(Field::new("count", DataType::UInt64, true)), |
| 59 | + ], |
| 60 | + ); |
| 61 | + AggregateUDF::from(udaf) |
| 62 | + } |
| 63 | + |
| 64 | + fn accumulator(args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> { |
| 65 | + if args.schema.fields().len() != 1 { |
| 66 | + return Err(datafusion_common::DataFusionError::Internal(format!( |
| 67 | + "expect creating `VEC_AVG` with only one input field, actual {}", |
| 68 | + args.schema.fields().len() |
| 69 | + ))); |
| 70 | + } |
| 71 | + |
| 72 | + let t = args.schema.field(0).data_type(); |
| 73 | + if !matches!(t, DataType::Utf8 | DataType::LargeUtf8 | DataType::Binary) { |
| 74 | + return Err(datafusion_common::DataFusionError::Internal(format!( |
| 75 | + "unexpected input datatype {t} when creating `VEC_AVG`" |
| 76 | + ))); |
| 77 | + } |
| 78 | + |
| 79 | + Ok(Box::new(VectorAvg::default())) |
| 80 | + } |
| 81 | + |
| 82 | + fn inner(&mut self, len: usize) -> &mut OVector<f32, Dyn> { |
| 83 | + self.sum |
| 84 | + .get_or_insert_with(|| OVector::zeros_generic(Dyn(len), Const::<1>)) |
| 85 | + } |
| 86 | + |
| 87 | + fn update(&mut self, values: &[ArrayRef], is_update: bool) -> Result<()> { |
| 88 | + if values.is_empty() { |
| 89 | + return Ok(()); |
| 90 | + }; |
| 91 | + |
| 92 | + let vectors = match values[0].data_type() { |
| 93 | + DataType::Utf8 => { |
| 94 | + let arr: &StringArray = values[0].as_string(); |
| 95 | + arr.iter() |
| 96 | + .filter_map(|x| x.map(|s| parse_veclit_from_strlit(s).map_err(Into::into))) |
| 97 | + .map(|x| x.map(Cow::Owned)) |
| 98 | + .collect::<Result<Vec<_>>>()? |
| 99 | + } |
| 100 | + DataType::LargeUtf8 => { |
| 101 | + let arr: &LargeStringArray = values[0].as_string(); |
| 102 | + arr.iter() |
| 103 | + .filter_map(|x| x.map(|s| parse_veclit_from_strlit(s).map_err(Into::into))) |
| 104 | + .map(|x: Result<Vec<f32>>| x.map(Cow::Owned)) |
| 105 | + .collect::<Result<Vec<_>>>()? |
| 106 | + } |
| 107 | + DataType::Binary => { |
| 108 | + let arr: &BinaryArray = values[0].as_binary(); |
| 109 | + arr.iter() |
| 110 | + .filter_map(|x| x.map(|b| binlit_as_veclit(b).map_err(Into::into))) |
| 111 | + .collect::<Result<Vec<_>>>()? |
| 112 | + } |
| 113 | + _ => { |
| 114 | + return Err(datafusion_common::DataFusionError::NotImplemented(format!( |
| 115 | + "unsupported data type {} for `VEC_AVG`", |
| 116 | + values[0].data_type() |
| 117 | + ))); |
| 118 | + } |
| 119 | + }; |
| 120 | + |
| 121 | + if vectors.is_empty() { |
| 122 | + return Ok(()); |
| 123 | + } |
| 124 | + |
| 125 | + let len = if is_update { |
| 126 | + vectors.len() as u64 |
| 127 | + } else { |
| 128 | + sum(values[1].as_primitive::<UInt64Type>()).unwrap_or_default() |
| 129 | + }; |
| 130 | + |
| 131 | + let dims = vectors[0].len(); |
| 132 | + let mut sum = DVector::zeros(dims); |
| 133 | + for v in vectors { |
| 134 | + if v.len() != dims { |
| 135 | + return Err(datafusion_common::DataFusionError::Execution( |
| 136 | + "vectors length not match: VEC_AVG".to_string(), |
| 137 | + )); |
| 138 | + } |
| 139 | + let v_view = DVectorView::from_slice(&v, dims); |
| 140 | + sum += &v_view; |
| 141 | + } |
| 142 | + |
| 143 | + *self.inner(dims) += sum; |
| 144 | + self.count += len; |
| 145 | + |
| 146 | + Ok(()) |
| 147 | + } |
| 148 | +} |
| 149 | + |
| 150 | +impl Accumulator for VectorAvg { |
| 151 | + fn state(&mut self) -> Result<Vec<ScalarValue>> { |
| 152 | + let vector = match &self.sum { |
| 153 | + None => ScalarValue::Binary(None), |
| 154 | + Some(sum) => ScalarValue::Binary(Some(veclit_to_binlit(sum.as_slice()))), |
| 155 | + }; |
| 156 | + Ok(vec![vector, ScalarValue::from(self.count)]) |
| 157 | + } |
| 158 | + |
| 159 | + fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { |
| 160 | + self.update(values, true) |
| 161 | + } |
| 162 | + |
| 163 | + fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { |
| 164 | + self.update(states, false) |
| 165 | + } |
| 166 | + |
| 167 | + fn evaluate(&mut self) -> Result<ScalarValue> { |
| 168 | + match &self.sum { |
| 169 | + None => Ok(ScalarValue::Binary(None)), |
| 170 | + Some(sum) => Ok(ScalarValue::Binary(Some(veclit_to_binlit( |
| 171 | + (sum / self.count as f32).as_slice(), |
| 172 | + )))), |
| 173 | + } |
| 174 | + } |
| 175 | + |
| 176 | + fn size(&self) -> usize { |
| 177 | + size_of_val(self) |
| 178 | + } |
| 179 | +} |
| 180 | + |
| 181 | +#[cfg(test)] |
| 182 | +mod tests { |
| 183 | + use std::sync::Arc; |
| 184 | + |
| 185 | + use arrow::array::StringArray; |
| 186 | + use datatypes::scalars::ScalarVector; |
| 187 | + use datatypes::vectors::{ConstantVector, StringVector, Vector}; |
| 188 | + |
| 189 | + use super::*; |
| 190 | + |
| 191 | + #[test] |
| 192 | + fn test_update_batch() { |
| 193 | + // test update empty batch, expect not updating anything |
| 194 | + let mut vec_avg = VectorAvg::default(); |
| 195 | + vec_avg.update_batch(&[]).unwrap(); |
| 196 | + assert!(vec_avg.sum.is_none()); |
| 197 | + assert_eq!(ScalarValue::Binary(None), vec_avg.evaluate().unwrap()); |
| 198 | + |
| 199 | + // test update one not-null value |
| 200 | + let mut vec_avg = VectorAvg::default(); |
| 201 | + let v: Vec<ArrayRef> = vec![Arc::new(StringArray::from(vec![ |
| 202 | + Some("[1.0,2.0,3.0]".to_string()), |
| 203 | + Some("[4.0,5.0,6.0]".to_string()), |
| 204 | + ]))]; |
| 205 | + vec_avg.update_batch(&v).unwrap(); |
| 206 | + assert_eq!( |
| 207 | + ScalarValue::Binary(Some(veclit_to_binlit(&[2.5, 3.5, 4.5]))), |
| 208 | + vec_avg.evaluate().unwrap() |
| 209 | + ); |
| 210 | + |
| 211 | + // test update one null value |
| 212 | + let mut vec_avg = VectorAvg::default(); |
| 213 | + let v: Vec<ArrayRef> = vec![Arc::new(StringArray::from(vec![Option::<String>::None]))]; |
| 214 | + vec_avg.update_batch(&v).unwrap(); |
| 215 | + assert_eq!(ScalarValue::Binary(None), vec_avg.evaluate().unwrap()); |
| 216 | + |
| 217 | + // test update no null-value batch |
| 218 | + let mut vec_avg = VectorAvg::default(); |
| 219 | + let v: Vec<ArrayRef> = vec![Arc::new(StringArray::from(vec![ |
| 220 | + Some("[1.0,2.0,3.0]".to_string()), |
| 221 | + Some("[4.0,5.0,6.0]".to_string()), |
| 222 | + Some("[7.0,8.0,9.0]".to_string()), |
| 223 | + ]))]; |
| 224 | + vec_avg.update_batch(&v).unwrap(); |
| 225 | + assert_eq!( |
| 226 | + ScalarValue::Binary(Some(veclit_to_binlit(&[4.0, 5.0, 6.0]))), |
| 227 | + vec_avg.evaluate().unwrap() |
| 228 | + ); |
| 229 | + |
| 230 | + // test update null-value batch |
| 231 | + let mut vec_avg = VectorAvg::default(); |
| 232 | + let v: Vec<ArrayRef> = vec![Arc::new(StringArray::from(vec![ |
| 233 | + Some("[1.0,2.0,3.0]".to_string()), |
| 234 | + None, |
| 235 | + Some("[7.0,8.0,9.0]".to_string()), |
| 236 | + ]))]; |
| 237 | + vec_avg.update_batch(&v).unwrap(); |
| 238 | + assert_eq!( |
| 239 | + ScalarValue::Binary(Some(veclit_to_binlit(&[4.0, 5.0, 6.0]))), |
| 240 | + vec_avg.evaluate().unwrap() |
| 241 | + ); |
| 242 | + |
| 243 | + let mut vec_avg = VectorAvg::default(); |
| 244 | + let v: Vec<ArrayRef> = vec![Arc::new(StringArray::from(vec![ |
| 245 | + None, |
| 246 | + Some("[4.0,5.0,6.0]".to_string()), |
| 247 | + Some("[7.0,8.0,9.0]".to_string()), |
| 248 | + ]))]; |
| 249 | + vec_avg.update_batch(&v).unwrap(); |
| 250 | + assert_eq!( |
| 251 | + ScalarValue::Binary(Some(veclit_to_binlit(&[5.5, 6.5, 7.5]))), |
| 252 | + vec_avg.evaluate().unwrap() |
| 253 | + ); |
| 254 | + |
| 255 | + // test update with constant vector |
| 256 | + let mut vec_avg = VectorAvg::default(); |
| 257 | + let v: Vec<ArrayRef> = vec![ |
| 258 | + Arc::new(ConstantVector::new( |
| 259 | + Arc::new(StringVector::from_vec(vec!["[1.0,2.0,3.0]".to_string()])), |
| 260 | + 4, |
| 261 | + )) |
| 262 | + .to_arrow_array(), |
| 263 | + ]; |
| 264 | + vec_avg.update_batch(&v).unwrap(); |
| 265 | + assert_eq!( |
| 266 | + ScalarValue::Binary(Some(veclit_to_binlit(&[1.0, 2.0, 3.0]))), |
| 267 | + vec_avg.evaluate().unwrap() |
| 268 | + ); |
| 269 | + } |
| 270 | +} |
0 commit comments