|
| 1 | +# BrowseComp-ZH (Chinese) |
| 2 | + |
| 3 | +MiroFlow's evaluation on the BrowseComp-ZH benchmark demonstrates advanced web browsing and information retrieval capabilities in the Chinese information ecosystem. |
| 4 | + |
| 5 | +More details: [BrowseComp-ZH: Benchmarking Web Browsing Ability of Large Language Models in Chinese](https://github.com/PALIN2018/BrowseComp-ZH) |
| 6 | + |
| 7 | +--- |
| 8 | + |
| 9 | +## Dataset Overview |
| 10 | + |
| 11 | +!!! abstract "Key Dataset Characteristics" |
| 12 | + |
| 13 | + - **Total Tasks**: 289 complex multi-hop retrieval questions in the test split |
| 14 | + - **Language**: Chinese (Simplified) |
| 15 | + - **Task Types**: Web browsing, search, and information retrieval with multi-hop reasoning |
| 16 | + - **Domains**: 11 domains including Film & TV, Technology, Medicine, History, Sports, and Arts |
| 17 | + - **Evaluation**: Automated comparison with ground truth answers |
| 18 | + - **Difficulty**: High-difficulty benchmark designed to test real-world Chinese web browsing capabilities |
| 19 | + |
| 20 | +--- |
| 21 | + |
| 22 | +## Quick Start Guide |
| 23 | + |
| 24 | +### Step 1: Prepare the BrowseComp-ZH Dataset |
| 25 | + |
| 26 | +```bash title="Download BrowseComp-ZH Dataset" |
| 27 | +uv run main.py prepare-benchmark get browsecomp-zh-test |
| 28 | +``` |
| 29 | + |
| 30 | +This will create the standardized dataset at `data/browsecomp-zh-test/standardized_data.jsonl`. |
| 31 | + |
| 32 | +### Step 2: Configure API Keys |
| 33 | + |
| 34 | +```env title=".env Configuration" |
| 35 | +# Search and web scraping (recommended for Chinese web) |
| 36 | +SERPER_API_KEY="xxx" |
| 37 | +JINA_API_KEY="xxx" |
| 38 | +
|
| 39 | +# Code execution |
| 40 | +E2B_API_KEY="xxx" |
| 41 | +
|
| 42 | +# LLM (Claude 3.7 Sonnet via OpenRouter) |
| 43 | +OPENROUTER_API_KEY="xxx" |
| 44 | +OPENROUTER_BASE_URL="https://openrouter.ai/api/v1" |
| 45 | +
|
| 46 | +# Evaluation and hint generation |
| 47 | +OPENAI_API_KEY="xxx" |
| 48 | +
|
| 49 | +# Vision capabilities |
| 50 | +ANTHROPIC_API_KEY="xxx" |
| 51 | +GEMINI_API_KEY="xxx" |
| 52 | +
|
| 53 | +# Optional: Set Chinese context mode |
| 54 | +CHINESE_CONTEXT="true" |
| 55 | +``` |
| 56 | + |
| 57 | +### Step 3: Run the Evaluation |
| 58 | + |
| 59 | +```bash title="Run BrowseComp-ZH Evaluation" |
| 60 | +uv run main.py common-benchmark --config_file_name=agent_browsecomp-zh_claude37sonnet output_dir="logs/browsecomp-zh/$(date +"%Y%m%d_%H%M")" |
| 61 | +``` |
| 62 | + |
| 63 | +Results are automatically generated in the output directory: |
| 64 | +- `benchmark_results.jsonl` - Detailed results for each task |
| 65 | +- `benchmark_results_pass_at_1_accuracy.txt` - Summary accuracy statistics |
| 66 | + |
| 67 | +--- |
| 68 | + |
| 69 | +## Usage Examples |
| 70 | + |
| 71 | +```bash title="Limited Task Testing" |
| 72 | +# Test with 10 tasks only |
| 73 | +uv run main.py common-benchmark --config_file_name=agent_browsecomp-zh_claude37sonnet benchmark.execution.max_tasks=10 output_dir="logs/browsecomp-zh/$(date +"%Y%m%d_%H%M")" |
| 74 | +``` |
| 75 | + |
| 76 | +```bash title="Using MiroThinker Model" |
| 77 | +uv run main.py common-benchmark --config_file_name=agent_browsecomp-zh_mirothinker output_dir="logs/browsecomp-zh/$(date +"%Y%m%d_%H%M")" |
| 78 | +``` |
| 79 | + |
| 80 | +--- |
| 81 | + |
| 82 | +## Available Agent Configurations |
| 83 | + |
| 84 | +| Agent Configuration | Model | Use Case | |
| 85 | +|-------------------|-------|----------| |
| 86 | +| `agent_browsecomp-zh_claude37sonnet` | Claude 3.7 Sonnet | Recommended for better performance on Chinese tasks | |
| 87 | +| `agent_browsecomp-zh_mirothinker` | MiroThinker | For local deployment | |
| 88 | + |
| 89 | +--- |
| 90 | + |
| 91 | +!!! info "Documentation Info" |
| 92 | + **Last Updated:** October 2025 · **Doc Contributor:** Team @ MiroMind AI |
| 93 | + |
| 94 | + |
0 commit comments