|
| 1 | +# HLE |
| 2 | + |
| 3 | +MiroFlow's evaluation on the HLE benchmark demonstrates capabilities in multimodal reasoning and question answering tasks that require human-level understanding across vision and language. |
| 4 | + |
| 5 | +More details: [HLE Dataset on HuggingFace](https://huggingface.co/datasets/cais/hle) |
| 6 | + |
| 7 | +--- |
| 8 | + |
| 9 | +## Dataset Overview |
| 10 | + |
| 11 | +!!! info "HLE Dataset" |
| 12 | + The HLE dataset consists of challenging multimodal tasks that test AI systems' ability to perform human-level reasoning with both visual and textual information. |
| 13 | + |
| 14 | +!!! abstract "Key Dataset Characteristics" |
| 15 | + |
| 16 | + - **Total Tasks**: Test split from HuggingFace `cais/hle` dataset |
| 17 | + - **Task Type**: Multimodal question answering and reasoning |
| 18 | + - **Modalities**: Text + Images |
| 19 | + - **Ground Truth**: Available for evaluation |
| 20 | + |
| 21 | +--- |
| 22 | + |
| 23 | +## Quick Start Guide |
| 24 | + |
| 25 | +### Step 1: Prepare the HLE Dataset |
| 26 | + |
| 27 | +```bash title="Download HLE Dataset" |
| 28 | +uv run main.py prepare-benchmark get hle |
| 29 | +``` |
| 30 | + |
| 31 | +This will download the dataset and save images to `data/hle/images/`. |
| 32 | + |
| 33 | +### Step 2: Configure API Keys |
| 34 | + |
| 35 | +```env title=".env Configuration" |
| 36 | +# For searching and web scraping |
| 37 | +SERPER_API_KEY="xxx" |
| 38 | +JINA_API_KEY="xxx" |
| 39 | +
|
| 40 | +# For Linux sandbox (code execution environment) |
| 41 | +E2B_API_KEY="xxx" |
| 42 | +
|
| 43 | +# Claude-3.7-Sonnet via OpenRouter |
| 44 | +OPENROUTER_API_KEY="xxx" |
| 45 | +OPENROUTER_BASE_URL="https://openrouter.ai/api/v1" |
| 46 | +
|
| 47 | +# Vision understanding |
| 48 | +ANTHROPIC_API_KEY="xxx" |
| 49 | +GEMINI_API_KEY="xxx" |
| 50 | +
|
| 51 | +# Hint generation and final answer extraction |
| 52 | +OPENAI_API_KEY="xxx" |
| 53 | +OPENAI_BASE_URL="https://api.openai.com/v1" |
| 54 | +``` |
| 55 | + |
| 56 | +### Step 3: Run the Evaluation |
| 57 | + |
| 58 | +```bash title="Run HLE Evaluation" |
| 59 | +uv run main.py common-benchmark --config_file_name=agent_hle_claude37sonnet benchmark=hle output_dir="logs/hle/$(date +"%Y%m%d_%H%M")" |
| 60 | +``` |
| 61 | + |
| 62 | +!!! tip "Resume Interrupted Evaluation" |
| 63 | + Specify the same output directory to continue from where you left off: |
| 64 | + |
| 65 | + ```bash |
| 66 | + uv run main.py common-benchmark --config_file_name=agent_hle_claude37sonnet benchmark=hle output_dir="logs/hle/20251014_1504" |
| 67 | + ``` |
| 68 | + |
| 69 | +### Step 4: Review Results |
| 70 | + |
| 71 | +```bash title="Check Results" |
| 72 | +# View accuracy summary |
| 73 | +cat logs/hle/*/benchmark_results_pass_at_1_accuracy.txt |
| 74 | + |
| 75 | +# View detailed results |
| 76 | +cat logs/hle/*/benchmark_results.jsonl |
| 77 | +``` |
| 78 | + |
| 79 | +--- |
| 80 | + |
| 81 | +## Usage Examples |
| 82 | + |
| 83 | +### Test with Limited Tasks |
| 84 | + |
| 85 | +```bash |
| 86 | +uv run main.py common-benchmark --config_file_name=agent_hle_claude37sonnet benchmark=hle benchmark.execution.max_tasks=10 output_dir="logs/hle/$(date +"%Y%m%d_%H%M")" |
| 87 | +``` |
| 88 | + |
| 89 | +### Adjust Concurrency |
| 90 | + |
| 91 | +```bash |
| 92 | +uv run main.py common-benchmark --config_file_name=agent_hle_claude37sonnet benchmark=hle benchmark.execution.max_concurrent=5 output_dir="logs/hle/$(date +"%Y%m%d_%H%M")" |
| 93 | +``` |
| 94 | + |
| 95 | +--- |
| 96 | + |
| 97 | +!!! info "Documentation Info" |
| 98 | + **Last Updated:** October 2025 · **Doc Contributor:** Team @ MiroMind AI |
| 99 | + |
0 commit comments