diff --git a/config/agent_browsecomp-en_mirothinker.yaml b/config/agent_browsecomp-en_mirothinker.yaml index 63bca34..ffbf6de 100644 --- a/config/agent_browsecomp-en_mirothinker.yaml +++ b/config/agent_browsecomp-en_mirothinker.yaml @@ -22,6 +22,11 @@ main_agent: tool_config: - tool-reasoning + - tool-searching + - tool-image-video + - tool-reading + - tool-code + - tool-audio max_turns: 50 # Maximum number of turns for main agent execution max_tool_calls_per_turn: 10 # Maximum number of tool calls per turn @@ -40,32 +45,7 @@ main_agent: chinese_context: "${oc.env:CHINESE_CONTEXT,false}" -sub_agents: - agent-worker: - prompt_class: SubAgentWorkerPrompt - llm: - provider_class: "MiroThinkerSGLangClient" - model_name: "DUMMY_MODEL_NAME" - async_client: true - temperature: 0.3 - top_p: 1.0 - min_p: 0.0 - top_k: -1 - max_tokens: 4096 - oai_mirothinker_api_key: "${oc.env:OAI_MIROTHINKER_API_KEY,dummy_key}" - oai_mirothinker_base_url: "${oc.env:OAI_MIROTHINKER_BASE_URL,http://localhost:61005/v1}" - keep_tool_result: -1 - oai_tool_thinking: false - - tool_config: - - tool-searching - - tool-image-video - - tool-reading - - tool-code - - tool-audio - - max_turns: 50 # Maximum number of turns for main agent execution - max_tool_calls_per_turn: 10 # Maximum number of tool calls per turn +sub_agents: null # Can define some top-level or default parameters here diff --git a/docs/mkdocs/docs/all_about_agents.md b/docs/mkdocs/docs/all_about_agents.md index bb9f05b..c838a45 100644 --- a/docs/mkdocs/docs/all_about_agents.md +++ b/docs/mkdocs/docs/all_about_agents.md @@ -239,6 +239,34 @@ Welcome to our comprehensive resource collection for AI agents. This page curate **P073** - Auto-scaling Continuous Memory for GUI Agent - [:material-file-document: Paper](https://arxiv.org/abs/2510.09038) +**P074** - StoryBox: Collaborative Multi-Agent Simulation for Hybrid Bottom-Up Long-Form Story Generation Using Large Language Models + - [:material-file-document: Paper](https://arxiv.org/abs/2510.11618) + +**P075** - WebRouter: Query-specific Router via Variational Information Bottleneck for Cost-sensitive Web Agent + - [:material-file-document: Paper](https://arxiv.org/abs/2510.11221) + +**P076** - LLM×MapReduce-V3: Enabling Interactive In-Depth Survey Generation through a MCP-Driven Hierarchically Modular Agent System + - [:material-file-document: Paper](https://arxiv.org/abs/2510.10890) + +**P077** - BrowserAgent: Building Web Agents with Human-Inspired Web Browsing Actions + - [:material-file-document: Paper](https://arxiv.org/abs/2510.10666) + +**P078** - AGENTIQL: An Agent-Inspired Multi-Expert Framework for Text-to-SQL Generation + - [:material-file-document: Paper](https://arxiv.org/abs/2510.10661) + +**P079** - FML-bench: A Benchmark for Automatic ML Research Agents Highlighting the Importance of Exploration Breadth + - [:material-file-document: Paper](https://arxiv.org/abs/2510.10472) + +**P080** - MedAgentAudit: Diagnosing and Quantifying Collaborative Failure Modes in Medical Multi-Agent Systems + - [:material-file-document: Paper](https://arxiv.org/abs/2510.10185) + +**P081** - Can Tool-Integrated Reinforcement Learning Generalize Across Diverse Domains? + - [:material-file-document: Paper](https://arxiv.org/abs/2510.11184) + +**P082** - A Survey on Agentic Multimodal Large Language Models + - [:material-file-document: Paper](https://arxiv.org/abs/2510.10991) + + --- @@ -361,6 +389,12 @@ Welcome to our comprehensive resource collection for AI agents. This page curate **E029** - DITING: A Multi-Agent Evaluation Framework for Benchmarking Web Novel Translation - [:material-file-document: Paper](https://arxiv.org/abs/2510.09116) +**E030** - When Agents Trade: Live Multi-Market Trading Benchmark for LLM Agents + - [:material-file-document: Paper](https://arxiv.org/abs/2510.11695) + +**E031** - A Comprehensive Survey on Benchmarks and Solutions in Software Engineering of LLM-Empowered Agentic System + - [:material-file-document: Paper](https://arxiv.org/abs/2510.09721) + --- @@ -420,6 +454,8 @@ Welcome to our comprehensive resource collection for AI agents. This page curate **M017** - Mem-α: Learning Memory Construction via Reinforcement Learning - [:material-file-document: Paper](https://arxiv.org/abs/2509.25911) +**M018** - Preference-Aware Memory Update for Long-Term LLM Agents + - [:material-file-document: Paper](https://arxiv.org/abs/2510.09720) ---