You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -23,13 +23,15 @@ Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Ce
23
23
Please see install instructions [below](README.md/#Installation), and also check out the detailed documentation at [**cellpose.readthedocs.io**](https://cellpose.readthedocs.io/en/latest/) for more information. Example notebooks:
24
24
25
25
*[run_cellpose3.ipynb](https://github.com/MouseLand/cellpose/blob/main/notebooks/run_cellpose3.ipynb)[](https://colab.research.google.com/github/MouseLand/cellpose/blob/main/notebooks/run_cellpose3.ipynb) shows how to run image restoration using new `CellposeDenoiseModel` from Cellpose3
26
-
**[run_cyto3.ipynb](https://github.com/MouseLand/cellpose/blob/main/notebooks/run_cellpose3.ipynb)[](https://colab.research.google.com/github/MouseLand/cellpose/blob/main/notebooks/run_cyto3.ipynb) shows how to use new super-generalist "cyto3" model with `model_type="cyto3"`.
26
+
*[run_cyto3.ipynb](https://github.com/MouseLand/cellpose/blob/main/notebooks/run_cellpose3.ipynb)[](https://colab.research.google.com/github/MouseLand/cellpose/blob/main/notebooks/run_cyto3.ipynb) shows how to use new super-generalist "cyto3" model with `model_type="cyto3"`.
27
27
*[](https://colab.research.google.com/github/MouseLand/cellpose/blob/main/notebooks/run_cellpose_2.ipynb)
28
28
Train your own models with Cellpose.
29
29
*[run_cellpose_GPU.ipynb](https://github.com/MouseLand/cellpose/blob/main/notebooks/run_cellpose_GPU.ipynb)[](https://colab.research.google.com/github/MouseLand/cellpose/blob/main/notebooks/run_cellpose_GPU.ipynb) runs Cellpose segmentation in 2D and 3D
30
30
*[Cellpose_cell_segmentation_2D_prediction_only.ipynb](https://github.com/MouseLand/cellpose/blob/main/notebooks/Cellpose_cell_segmentation_2D_prediction_only.ipynb)[](https://colab.research.google.com/github/MouseLand/cellpose/blob/main/notebooks/Cellpose_cell_segmentation_2D_prediction_only.ipynb) a user-friendly notebook for 2D segmentation written by [@pr4deepr](https://github.com/pr4deepr)
31
31
*[](https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/Beta%20notebooks/Cellpose_2D_ZeroCostDL4Mic.ipynb) a user-friendly [ZeroCostDL4Mic](https://github.com/HenriquesLab/ZeroCostDL4Mic) notebook that includes training cellpose models, written by [@guijacquemet](https://github.com/guijacquemet)
32
32
33
+
:triangular_flag_on_post: All models in Cellpose, except `yeast_BF_cp3`, `yeast_PhC_cp3`, and `deepbacs_cp3`, are trained on some amount of data that is **CC-BY-NC**. The Cellpose annotated dataset is also CC-BY-NC.
34
+
33
35
### CITATION
34
36
35
37
**If you use Cellpose 1, 2 or 3, please cite the Cellpose 1.0 [paper](https://t.co/kBMXmPp3Yn?amp=1):**
@@ -41,8 +43,6 @@ Pachitariu, M. & Stringer, C. (2022). Cellpose 2.0: how to train your own model.
41
43
**If you use the new image restoration models or cyto3, please also cite the Cellpose3 [paper](https://www.biorxiv.org/content/10.1101/2024.02.10.579780v1):**
42
44
Stringer, C. & Pachitariu, M. (2024). Cellpose3: one-click image restoration for improved segmentation. <em>bioRxiv</em>.
43
45
44
-
:triangular_flag_on_post: All models in Cellpose, except `yeast_BF_cp3`, `yeast_PhC_cp3`, and `deepbacs_cp3`, are trained on some amount of data that is **CC-BY-NC**. The Cellpose annotated dataset is also CC-BY-NC.
45
-
46
46
### :star2: v3 (Feb 2024) :star2:
47
47
48
48
Cellpose3 enables image restoration in the GUI, API and CLI (saved to `_seg.npy`). To learn more...
0 commit comments