11import asyncio
2- from typing import TYPE_CHECKING , AsyncIterator , Literal , cast
3- import os
2+ from typing import TYPE_CHECKING , AsyncIterator , Literal
43
5- from art .client import Client
4+ from openai ._types import NOT_GIVEN
5+ from tqdm import auto as tqdm
6+
7+ from art .client import Client , ExperimentalTrainingConfig
68from art .utils .deploy_model import LoRADeploymentJob , LoRADeploymentProvider
79
810from .. import dev
@@ -57,7 +59,6 @@ def _model_inference_name(self, model: "TrainableModel") -> str:
5759 assert model .entity is not None , "Model entity is required"
5860 return f"{ model .entity } /{ model .project } /{ model .name } "
5961
60-
6162 async def _get_step (self , model : "Model" ) -> int :
6263 if model .trainable :
6364 assert model .id is not None , "Model ID is required"
@@ -75,6 +76,7 @@ async def _delete_checkpoints(
7576 benchmark_smoothing : float ,
7677 ) -> None :
7778 # TODO: potentially implement benchmark smoothing
79+ assert model .id is not None , "Model ID is required"
7880 max_metric : float | None = None
7981 max_step : int | None = None
8082 all_steps : list [int ] = []
@@ -110,11 +112,12 @@ async def _log(
110112 print (f"Model { model .name } is not trainable; skipping logging." )
111113 return
112114
115+ assert model .id is not None , "Model ID is required"
116+
113117 await self ._client .checkpoints .log_trajectories (
114118 model_id = model .id , trajectory_groups = trajectory_groups , split = split
115119 )
116120
117-
118121 async def _train_model (
119122 self ,
120123 model : "TrainableModel" ,
@@ -124,15 +127,36 @@ async def _train_model(
124127 verbose : bool = False ,
125128 ) -> AsyncIterator [dict [str , float ]]:
126129 assert model .id is not None , "Model ID is required"
130+
127131 training_job = await self ._client .training_jobs .create (
128132 model_id = model .id ,
129133 trajectory_groups = trajectory_groups ,
130- experimental_config = dict (learning_rate = config .learning_rate ),
134+ experimental_config = ExperimentalTrainingConfig (
135+ learning_rate = config .learning_rate ,
136+ precalculate_logprobs = dev_config .get ("precalculate_logprobs" , None ),
137+ ),
131138 )
132- while training_job .status != "COMPLETED" :
133- await asyncio .sleep (1 )
134- training_job = await self ._client .training_jobs .retrieve (training_job .id )
135- yield {"num_gradient_steps" : 1 }
139+ after : str | None = None
140+ num_gradient_steps : int | None = None
141+ pbar : tqdm .tqdm | None = None
142+ while True :
143+ await asyncio .sleep (0.5 )
144+ async for event in self ._client .training_jobs .events .list (
145+ training_job_id = training_job .id , after = after or NOT_GIVEN
146+ ):
147+ if event .type == "gradient_step" :
148+ assert pbar is not None and num_gradient_steps is not None
149+ pbar .update (1 )
150+ pbar .set_postfix (event .data )
151+ yield {** event .data , "num_gradient_steps" : num_gradient_steps }
152+ elif event .type == "training_started" :
153+ num_gradient_steps = event .data ["num_gradient_steps" ]
154+ if pbar is None :
155+ pbar = tqdm .tqdm (total = num_gradient_steps , desc = "train" )
156+ continue
157+ elif event .type == "training_ended" :
158+ return
159+ after = event .id
136160
137161 # ------------------------------------------------------------------
138162 # Experimental support for S3
0 commit comments