|
| 1 | +from unittest.mock import MagicMock, Mock |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pytest |
| 5 | +from hypothesis import given |
| 6 | +from hypothesis import strategies as st |
| 7 | + |
| 8 | +from mpest.core.distribution import Distribution |
| 9 | +from mpest.models import AModel, AModelWithGenerator |
| 10 | + |
| 11 | + |
| 12 | +@st.composite |
| 13 | +def valid_params(draw, min_size=1, max_size=5): |
| 14 | + size = draw(st.integers(min_value=min_size, max_value=max_size)) |
| 15 | + params_list = draw( |
| 16 | + st.lists( |
| 17 | + st.floats(min_value=-100, max_value=100, allow_nan=False, allow_infinity=False), |
| 18 | + min_size=size, |
| 19 | + max_size=size, |
| 20 | + ) |
| 21 | + ) |
| 22 | + return np.array(params_list) |
| 23 | + |
| 24 | + |
| 25 | +@st.composite |
| 26 | +def valid_x(draw): |
| 27 | + return draw(st.floats(min_value=-100, max_value=100, allow_nan=False, allow_infinity=False)) |
| 28 | + |
| 29 | + |
| 30 | +@st.composite |
| 31 | +def valid_size(draw): |
| 32 | + return draw(st.integers(min_value=1, max_value=100)) |
| 33 | + |
| 34 | + |
| 35 | +class MockModel(AModel): |
| 36 | + @property |
| 37 | + def name(self): |
| 38 | + return "MockModel" |
| 39 | + |
| 40 | + def pdf(self, x, params): |
| 41 | + return 0.1 * x * sum(params) |
| 42 | + |
| 43 | + def lpdf(self, x, params): |
| 44 | + return np.log(self.pdf(x, params)) |
| 45 | + |
| 46 | + def params_convert_to_model(self, params): |
| 47 | + return params |
| 48 | + |
| 49 | + def params_convert_from_model(self, params): |
| 50 | + return params |
| 51 | + |
| 52 | + |
| 53 | +class MockModelWithGenerator(AModelWithGenerator): |
| 54 | + @property |
| 55 | + def name(self): |
| 56 | + return "MockModelWithGenerator" |
| 57 | + |
| 58 | + def pdf(self, x, params): |
| 59 | + return 0.1 * x * sum(params) |
| 60 | + |
| 61 | + def lpdf(self, x, params): |
| 62 | + return np.log(self.pdf(x, params)) |
| 63 | + |
| 64 | + def params_convert_to_model(self, params): |
| 65 | + return params |
| 66 | + |
| 67 | + def params_convert_from_model(self, params): |
| 68 | + return params |
| 69 | + |
| 70 | + def generate(self, params, size=1, **kwargs): |
| 71 | + return np.random.uniform(0, 1, size=size) |
| 72 | + |
| 73 | + |
| 74 | +class TestModuleDistribution: |
| 75 | + def test_init(self): |
| 76 | + model = Mock() |
| 77 | + params = np.array([1.0, 2.0]) |
| 78 | + |
| 79 | + dist = Distribution(model=model, params=params) |
| 80 | + |
| 81 | + assert dist._model is model |
| 82 | + assert np.array_equal(dist._params, params) |
| 83 | + |
| 84 | + def test_from_params(self): |
| 85 | + MockModelClass = Mock() |
| 86 | + mock_instance = Mock() |
| 87 | + MockModelClass.return_value = mock_instance |
| 88 | + params = [1.0, 2.0] |
| 89 | + |
| 90 | + dist = Distribution.from_params(MockModelClass, params) |
| 91 | + |
| 92 | + MockModelClass.assert_called_once() |
| 93 | + assert dist._model is mock_instance |
| 94 | + assert np.array_equal(dist._params, np.array(params)) |
| 95 | + |
| 96 | + def test_model_property(self): |
| 97 | + model = Mock() |
| 98 | + params = np.array([1.0, 2.0]) |
| 99 | + |
| 100 | + dist = Distribution(model=model, params=params) |
| 101 | + |
| 102 | + assert dist.model is model |
| 103 | + |
| 104 | + def test_params_property(self): |
| 105 | + model = Mock() |
| 106 | + params = np.array([1.0, 2.0]) |
| 107 | + |
| 108 | + dist = Distribution(model=model, params=params) |
| 109 | + |
| 110 | + assert dist.params is params |
| 111 | + assert np.array_equal(dist.params, params) |
| 112 | + |
| 113 | + def test_has_generator_property_true(self): |
| 114 | + model = MagicMock(spec=AModelWithGenerator) |
| 115 | + params = np.array([1.0, 2.0]) |
| 116 | + |
| 117 | + dist = Distribution(model=model, params=params) |
| 118 | + |
| 119 | + assert dist.has_generator is True |
| 120 | + |
| 121 | + def test_has_generator_property_false(self): |
| 122 | + model = MagicMock(spec=AModel) |
| 123 | + params = np.array([1.0, 2.0]) |
| 124 | + |
| 125 | + dist = Distribution(model=model, params=params) |
| 126 | + |
| 127 | + assert dist.has_generator is False |
| 128 | + |
| 129 | + @given(valid_x(), valid_params()) |
| 130 | + def test_pdf_calls_model_pdf_correctly(self, x, params): |
| 131 | + model = Mock() |
| 132 | + return_value = 0.1 |
| 133 | + converted_params = np.array([3.0, 4.0]) |
| 134 | + model.params_convert_to_model.return_value = converted_params |
| 135 | + model.pdf.return_value = return_value |
| 136 | + |
| 137 | + dist = Distribution(model=model, params=params) |
| 138 | + result = dist.pdf(x) |
| 139 | + |
| 140 | + model.params_convert_to_model.assert_called_once_with(params) |
| 141 | + model.pdf.assert_called_once_with(x, converted_params) |
| 142 | + assert result == return_value |
| 143 | + |
| 144 | + @given(valid_size(), valid_params()) |
| 145 | + def test_generate_with_generator_model(self, size, params): |
| 146 | + model = MagicMock(spec=AModelWithGenerator) |
| 147 | + converted_params = np.array([3.0, 4.0]) |
| 148 | + model.params_convert_to_model.return_value = converted_params |
| 149 | + generated_samples = np.random.uniform(0, 1, size=size) |
| 150 | + model.generate.return_value = generated_samples |
| 151 | + |
| 152 | + dist = Distribution(model=model, params=params) |
| 153 | + result = dist.generate(size=size) |
| 154 | + |
| 155 | + model.params_convert_to_model.assert_called_once_with(params) |
| 156 | + model.generate.assert_called_once_with(converted_params, size=size) |
| 157 | + assert np.array_equal(result, generated_samples) |
| 158 | + |
| 159 | + def test_generate_without_generator_raises_typeerror(self): |
| 160 | + model = MagicMock(spec=AModel) |
| 161 | + params = np.array([1.0, 2.0]) |
| 162 | + |
| 163 | + dist = Distribution(model=model, params=params) |
| 164 | + |
| 165 | + with pytest.raises(TypeError): |
| 166 | + dist.generate(size=3) |
| 167 | + |
| 168 | + |
| 169 | +class TestIntegrationDistribution: |
| 170 | + @given(valid_x(), valid_params()) |
| 171 | + def test_pdf_integration(self, x, params): |
| 172 | + model = MockModel() |
| 173 | + dist = Distribution(model=model, params=params) |
| 174 | + |
| 175 | + converted_params = model.params_convert_to_model(params) |
| 176 | + expected = model.pdf(x, converted_params) |
| 177 | + actual = dist.pdf(x) |
| 178 | + |
| 179 | + assert actual == pytest.approx(expected) |
| 180 | + |
| 181 | + @given(valid_size(), valid_params()) |
| 182 | + def test_generate_integration(self, size, params): |
| 183 | + model = MockModelWithGenerator() |
| 184 | + |
| 185 | + dist = Distribution(model=model, params=params) |
| 186 | + result = dist.generate(size=size) |
| 187 | + |
| 188 | + assert result.shape == (size,) |
| 189 | + assert result.dtype == np.float64 |
| 190 | + assert np.all(result >= 0) |
| 191 | + assert np.all(result < 1) |
| 192 | + |
| 193 | + def test_generate_without_generator_raises_typeerror_integration(self): |
| 194 | + model = MockModel() |
| 195 | + params = np.array([1.0, 2.0]) |
| 196 | + |
| 197 | + dist = Distribution(model=model, params=params) |
| 198 | + |
| 199 | + with pytest.raises(TypeError): |
| 200 | + dist.generate(size=3) |
| 201 | + |
| 202 | + @given(valid_x(), valid_params()) |
| 203 | + def test_pdf_consistent_results(self, x, params): |
| 204 | + model = MockModel() |
| 205 | + dist = Distribution(model=model, params=params) |
| 206 | + |
| 207 | + result1 = dist.pdf(x) |
| 208 | + result2 = dist.pdf(x) |
| 209 | + |
| 210 | + assert result1 == pytest.approx(result2) |
0 commit comments