|
| 1 | +using SafeTestsets |
| 2 | + |
| 3 | +@safetestset "SurrogatesFlux" begin |
| 4 | + |
| 5 | +using Surrogates |
| 6 | +using Surrogates: SobolSample |
| 7 | +using Flux |
| 8 | +using Flux: @epochs |
| 9 | +using SurrogatesFlux |
| 10 | +using LinearAlgebra |
| 11 | +using Zygote |
| 12 | + |
| 13 | +#1D |
| 14 | +a = 0.0 |
| 15 | +b = 10.0 |
| 16 | +obj_1D = x -> 2*x+3 |
| 17 | +x = sample(10,0.0,10.,SobolSample()) |
| 18 | +y = obj_1D.(x); |
| 19 | +my_model = Chain(Dense(1,1), first) |
| 20 | +my_loss(x, y) = Flux.mse(my_model(x), y) |
| 21 | +my_opt = Descent(0.01) |
| 22 | +n_echos = 1 |
| 23 | +my_neural = NeuralSurrogate(x,y,a,b,model = my_model,loss = my_loss,opt = my_opt,n_echos=1) |
| 24 | +my_neural_kwargs = NeuralSurrogate(x,y,a,b) |
| 25 | +add_point!(my_neural,8.5,20.0) |
| 26 | +add_point!(my_neural,[3.2,3.5],[7.4,8.0]) |
| 27 | +val = my_neural(5.0) |
| 28 | + |
| 29 | +#ND |
| 30 | + |
| 31 | +lb = [0.0,0.0] |
| 32 | +ub = [5.0,5.0] |
| 33 | +x = sample(5,lb,ub, SobolSample()) |
| 34 | +obj_ND_neural(x) = x[1]*x[2]; |
| 35 | +y = obj_ND_neural.(x) |
| 36 | +my_model = Chain(Dense(2,1), first) |
| 37 | +my_loss(x, y) = Flux.mse(my_model(x), y) |
| 38 | +my_opt = Descent(0.01) |
| 39 | +n_echos = 1 |
| 40 | +my_neural = NeuralSurrogate(x,y,lb,ub,model=my_model,loss=my_loss,opt=my_opt,n_echos=1) |
| 41 | +my_neural_kwargs = NeuralSurrogate(x,y,lb,ub) |
| 42 | +my_neural((3.5, 1.49)) |
| 43 | +my_neural([3.4,1.4]) |
| 44 | +add_point!(my_neural,(3.5,1.4),4.9) |
| 45 | +add_point!(my_neural,[(3.5,1.4),(1.5,1.4),(1.3,1.2)],[1.3,1.4,1.5]) |
| 46 | + |
| 47 | +# Multi-output #98 |
| 48 | +f = x -> [x^2, x] |
| 49 | +lb = 1.0 |
| 50 | +ub = 10.0 |
| 51 | +x = sample(5, lb, ub, SobolSample()) |
| 52 | +push!(x, 2.0) |
| 53 | +y = f.(x) |
| 54 | +my_model = Chain(Dense(1,2)) |
| 55 | +my_loss(x, y) = Flux.mse(my_model(x), y) |
| 56 | +surrogate = NeuralSurrogate(x,y,lb,ub,model = my_model,loss = my_loss ,opt=my_opt,n_echos=1) |
| 57 | +surr_kwargs = NeuralSurrogate(x,y,lb,ub) |
| 58 | + |
| 59 | +f = x -> [x[1], x[2]^2] |
| 60 | +lb = [1.0, 2.0] |
| 61 | +ub = [10.0, 8.5] |
| 62 | +x = sample(20, lb, ub, SobolSample()) |
| 63 | +push!(x, (1.0, 2.0)) |
| 64 | +y = f.(x) |
| 65 | +my_model = Chain(Dense(2,2)) |
| 66 | +my_loss(x, y) = Flux.mse(my_model(x), y) |
| 67 | +surrogate = NeuralSurrogate(x,y,lb,ub,model=my_model,loss=my_loss,opt=my_opt,n_echos=1) |
| 68 | +surrogate_kwargs = NeuralSurrogate(x,y,lb,ub) |
| 69 | +surrogate((1.0, 2.0)) |
| 70 | +x_new = (2.0, 2.0) |
| 71 | +y_new = f(x_new) |
| 72 | +add_point!(surrogate, x_new, y_new) |
| 73 | + |
| 74 | +#Optimization |
| 75 | +lb = [1.0,1.0] |
| 76 | +ub = [6.0,6.0] |
| 77 | +x = sample(5,lb,ub,SobolSample()) |
| 78 | +objective_function_ND = z -> 3*norm(z)+1 |
| 79 | +y = objective_function_ND.(x) |
| 80 | +model = Chain(Dense(2,1), first) |
| 81 | +loss(x, y) = Flux.mse(model(x), y) |
| 82 | +opt = Descent(0.01) |
| 83 | +n_echos = 1 |
| 84 | +my_neural_ND_neural = NeuralSurrogate(x,y,lb,ub) |
| 85 | +surrogate_optimize(objective_function_ND,SRBF(),lb,ub,my_neural_ND_neural,SobolSample(),maxiters=15) |
| 86 | + |
| 87 | +# AD Compatibility |
| 88 | +lb = 0.0 |
| 89 | +ub = 3.0 |
| 90 | +n = 10 |
| 91 | +x = sample(n,lb,ub,SobolSample()) |
| 92 | +f = x -> x^2 |
| 93 | +y = f.(x) |
| 94 | +#NN |
| 95 | +@testset "NN" begin |
| 96 | + my_model = Chain(Dense(1,1), first) |
| 97 | + my_loss(x, y) = Flux.mse(my_model(x), y) |
| 98 | + my_opt = Descent(0.01) |
| 99 | + n_echos = 1 |
| 100 | + my_neural = NeuralSurrogate(x,y,lb,ub,model=my_model,loss=my_loss,opt=my_opt,n_echos=1) |
| 101 | + g = x->my_neural'(x) |
| 102 | + g(3.4) |
| 103 | +end |
| 104 | + |
| 105 | +lb = [0.0,0.0] |
| 106 | +ub = [10.0,10.0] |
| 107 | +n = 5 |
| 108 | +x = sample(n,lb,ub,SobolSample()) |
| 109 | +f = x -> x[1]*x[2] |
| 110 | +y = f.(x) |
| 111 | + |
| 112 | +#NN |
| 113 | +@testset "NN ND" begin |
| 114 | + my_model = Chain(Dense(2,1), first) |
| 115 | + my_loss(x, y) = Flux.mse(my_model(x), y) |
| 116 | + my_opt = Descent(0.01) |
| 117 | + n_echos = 1 |
| 118 | + my_neural = NeuralSurrogate(x,y,lb,ub,model=my_model,loss=my_loss,opt=my_opt,n_echos=1) |
| 119 | + g = x -> Zygote.gradient(my_neural, x) |
| 120 | + g((2.0,5.0)) |
| 121 | +end |
| 122 | + |
| 123 | +# ###### ND -> ND ###### |
| 124 | + |
| 125 | +lb = [0.0, 0.0] |
| 126 | +ub = [10.0, 2.0] |
| 127 | +n = 5 |
| 128 | +x = sample(n,lb,ub,SobolSample()) |
| 129 | +f = x -> [x[1]^2, x[2]] |
| 130 | +y = f.(x) |
| 131 | + |
| 132 | +#NN |
| 133 | +@testset "NN ND -> ND" begin |
| 134 | + my_model = Chain(Dense(2,2)) |
| 135 | + my_loss(x, y) = Flux.mse(my_model(x), y) |
| 136 | + my_opt = Descent(0.01) |
| 137 | + n_echos = 1 |
| 138 | + my_neural = NeuralSurrogate(x,y,lb,ub,model=my_model,loss=my_loss,opt=my_opt,n_echos=1) |
| 139 | + Zygote.gradient(x -> sum(my_neural(x)), (2.0, 5.0)) |
| 140 | + |
| 141 | + my_rad = RadialBasis(x,y,lb,ub,rad = linearRadial()) |
| 142 | + Zygote.gradient(x -> sum(my_rad(x)), (2.0, 5.0)) |
| 143 | + |
| 144 | + my_p = 1.4 |
| 145 | + my_inverse = InverseDistanceSurrogate(x,y,lb,ub,p=my_p) |
| 146 | + my_inverse((2.0, 5.0)) |
| 147 | + Zygote.gradient(x -> sum(my_inverse(x)), (2.0, 5.0)) |
| 148 | + |
| 149 | + my_second = SecondOrderPolynomialSurrogate(x,y,lb,ub) |
| 150 | + Zygote.gradient(x -> sum(my_second(x)), (2.0, 5.0)) |
| 151 | +end |
| 152 | +end |
0 commit comments