@@ -146,7 +146,7 @@ is-closed-under-negation-left-submodule-Ring :
146146 ( subset-left-submodule-Ring R M N)
147147is-closed-under-negation-left-submodule-Ring R M N x x-in-subset =
148148 tr
149- ( λ x' → pr1 (subset-left-submodule-Ring R M N x'))
149+ ( λ x' → type-Prop (subset-left-submodule-Ring R M N x'))
150150 ( mul-neg-one-left-module-Ring R M x)
151151 ( is-closed-under-multiplication-by-scalar-left-submodule-Ring R M N
152152 ( neg-one-Ring R)
@@ -194,18 +194,23 @@ module _
194194
195195 neg-left-submodule-Ring :
196196 type-left-submodule-Ring R M N → type-left-submodule-Ring R M N
197- pr1 (neg-left-submodule-Ring x) = neg-left-module-Ring R M (pr1 x)
197+ pr1 (neg-left-submodule-Ring x) =
198+ neg-left-module-Ring R M (inclusion-left-submodule-Ring R M N x)
198199 pr2 (neg-left-submodule-Ring x) =
199- is-closed-under-negation-left-submodule-Ring R M N (pr1 x) (pr2 x)
200+ is-closed-under-negation-left-submodule-Ring R M N
201+ ( inclusion-left-submodule-Ring R M N x)
202+ ( pr2 x)
200203
201204 add-left-submodule-Ring :
202205 (x y : type-left-submodule-Ring R M N) → type-left-submodule-Ring R M N
203206 pr1 (add-left-submodule-Ring x y) =
204- add-left-module-Ring R M (pr1 x) (pr1 y)
207+ add-left-module-Ring R M
208+ ( inclusion-left-submodule-Ring R M N x)
209+ ( inclusion-left-submodule-Ring R M N y)
205210 pr2 (add-left-submodule-Ring x y) =
206211 is-closed-under-addition-left-submodule-Ring R M N
207- ( pr1 x)
208- ( pr1 y)
212+ ( inclusion-left-submodule-Ring R M N x)
213+ ( inclusion-left-submodule-Ring R M N y)
209214 ( pr2 x)
210215 ( pr2 y)
211216
@@ -214,10 +219,10 @@ module _
214219 (x : type-left-submodule-Ring R M N) →
215220 type-left-submodule-Ring R M N
216221 pr1 (mul-left-submodule-Ring r x) =
217- mul-left-module-Ring R M r (pr1 x)
222+ mul-left-module-Ring R M r (inclusion-left-submodule-Ring R M N x)
218223 pr2 (mul-left-submodule-Ring r x) =
219224 is-closed-under-multiplication-by-scalar-left-submodule-Ring R M N r
220- ( pr1 x)
225+ ( inclusion-left-submodule-Ring R M N x)
221226 ( pr2 x)
222227
223228 associative-add-left-submodule-Ring :
@@ -226,66 +231,78 @@ module _
226231 add-left-submodule-Ring x (add-left-submodule-Ring y z)
227232 associative-add-left-submodule-Ring x y z =
228233 eq-left-submodule-Ring-eq-left-module-Ring R M N
229- ( associative-add-left-module-Ring R M (pr1 x) (pr1 y) (pr1 z))
234+ ( associative-add-left-module-Ring R M
235+ ( inclusion-left-submodule-Ring R M N x)
236+ ( inclusion-left-submodule-Ring R M N y)
237+ ( inclusion-left-submodule-Ring R M N z))
230238
231239 left-unit-law-add-left-submodule-Ring :
232240 (x : type-left-submodule-Ring R M N) →
233241 add-left-submodule-Ring (unit-left-submodule-Ring R M N) x = x
234242 left-unit-law-add-left-submodule-Ring x =
235243 eq-left-submodule-Ring-eq-left-module-Ring R M N
236- ( left-unit-law-add-left-module-Ring R M (pr1 x))
244+ ( left-unit-law-add-left-module-Ring R M
245+ ( inclusion-left-submodule-Ring R M N x))
237246
238247 right-unit-law-add-left-submodule-Ring :
239248 (x : type-left-submodule-Ring R M N) →
240249 add-left-submodule-Ring x (unit-left-submodule-Ring R M N) = x
241250 right-unit-law-add-left-submodule-Ring x =
242251 eq-left-submodule-Ring-eq-left-module-Ring R M N
243- ( right-unit-law-add-left-module-Ring R M (pr1 x))
252+ ( right-unit-law-add-left-module-Ring R M
253+ ( inclusion-left-submodule-Ring R M N x))
244254
245255 left-inverse-law-add-left-submodule-Ring :
246256 (x : type-left-submodule-Ring R M N) →
247257 add-left-submodule-Ring (neg-left-submodule-Ring x) x =
248258 unit-left-submodule-Ring R M N
249259 left-inverse-law-add-left-submodule-Ring x =
250260 eq-left-submodule-Ring-eq-left-module-Ring R M N
251- ( left-inverse-law-add-left-module-Ring R M (pr1 x))
261+ ( left-inverse-law-add-left-module-Ring R M
262+ ( inclusion-left-submodule-Ring R M N x))
252263
253264 right-inverse-law-add-left-submodule-Ring :
254265 (x : type-left-submodule-Ring R M N) →
255266 add-left-submodule-Ring x (neg-left-submodule-Ring x) =
256267 unit-left-submodule-Ring R M N
257268 right-inverse-law-add-left-submodule-Ring x =
258269 eq-left-submodule-Ring-eq-left-module-Ring R M N
259- ( right-inverse-law-add-left-module-Ring R M (pr1 x))
270+ ( right-inverse-law-add-left-module-Ring R M
271+ ( inclusion-left-submodule-Ring R M N x))
260272
261273 commutative-add-left-submodule-Ring :
262274 (x y : type-left-submodule-Ring R M N) →
263275 add-left-submodule-Ring x y = add-left-submodule-Ring y x
264276 commutative-add-left-submodule-Ring x y =
265277 eq-left-submodule-Ring-eq-left-module-Ring R M N
266- ( commutative-add-left-module-Ring R M (pr1 x) (pr1 y))
278+ ( commutative-add-left-module-Ring R M
279+ ( inclusion-left-submodule-Ring R M N x)
280+ ( inclusion-left-submodule-Ring R M N y))
267281
268- left-distributive-law- mul-add-left-submodule-Ring :
282+ left-distributive-mul-add-left-submodule-Ring :
269283 (r : type-Ring R)
270284 (x y : type-left-submodule-Ring R M N) →
271285 mul-left-submodule-Ring r (add-left-submodule-Ring x y) =
272286 add-left-submodule-Ring
273287 ( mul-left-submodule-Ring r x)
274288 ( mul-left-submodule-Ring r y)
275- left-distributive-law- mul-add-left-submodule-Ring r x y =
289+ left-distributive-mul-add-left-submodule-Ring r x y =
276290 eq-left-submodule-Ring-eq-left-module-Ring R M N
277- ( left-distributive-mul-add-left-module-Ring R M r (pr1 x) (pr1 y))
291+ ( left-distributive-mul-add-left-module-Ring R M r
292+ ( inclusion-left-submodule-Ring R M N x)
293+ ( inclusion-left-submodule-Ring R M N y))
278294
279- right-distributive-law- mul-add-left-submodule-Ring :
295+ right-distributive-mul-add-left-submodule-Ring :
280296 (r s : type-Ring R)
281297 (x : type-left-submodule-Ring R M N) →
282298 mul-left-submodule-Ring (add-Ring R r s) x =
283299 add-left-submodule-Ring
284300 ( mul-left-submodule-Ring r x)
285301 ( mul-left-submodule-Ring s x)
286- right-distributive-law- mul-add-left-submodule-Ring r s x =
302+ right-distributive-mul-add-left-submodule-Ring r s x =
287303 eq-left-submodule-Ring-eq-left-module-Ring R M N
288- ( right-distributive-mul-add-left-module-Ring R M r s (pr1 x))
304+ ( right-distributive-mul-add-left-module-Ring R M r s
305+ ( inclusion-left-submodule-Ring R M N x))
289306
290307 associative-mul-left-submodule-Ring :
291308 (r s : type-Ring R)
@@ -294,14 +311,16 @@ module _
294311 mul-left-submodule-Ring r (mul-left-submodule-Ring s x)
295312 associative-mul-left-submodule-Ring r s x =
296313 eq-left-submodule-Ring-eq-left-module-Ring R M N
297- ( associative-mul-left-module-Ring R M r s (pr1 x))
314+ ( associative-mul-left-module-Ring R M r s
315+ ( inclusion-left-submodule-Ring R M N x))
298316
299317 left-unit-law-mul-left-submodule-Ring :
300318 (x : type-left-submodule-Ring R M N) →
301319 mul-left-submodule-Ring (one-Ring R) x = x
302320 left-unit-law-mul-left-submodule-Ring x =
303321 eq-left-submodule-Ring-eq-left-module-Ring R M N
304- ( left-unit-law-mul-left-module-Ring R M (pr1 x))
322+ ( left-unit-law-mul-left-module-Ring R M
323+ ( inclusion-left-submodule-Ring R M N x))
305324
306325 set-left-submodule-Ring : Set (l2 ⊔ l3)
307326 pr1 set-left-submodule-Ring = type-left-submodule-Ring R M N
@@ -340,7 +359,7 @@ module _
340359 (r : type-Ring R) → hom-Ab ab-left-submodule-Ring ab-left-submodule-Ring
341360 pr1 (map-hom-left-submodule-Ring r) = mul-left-submodule-Ring r
342361 pr2 (map-hom-left-submodule-Ring r) {x} {y} =
343- left-distributive-law- mul-add-left-submodule-Ring r x y
362+ left-distributive-mul-add-left-submodule-Ring r x y
344363
345364 mul-hom-left-submodule-Ring :
346365 hom-Ring R endomorphism-ring-left-submodule-Ring
@@ -349,7 +368,7 @@ module _
349368 eq-htpy-hom-Ab
350369 ab-left-submodule-Ring
351370 ab-left-submodule-Ring
352- ( right-distributive-law- mul-add-left-submodule-Ring r s)
371+ ( right-distributive-mul-add-left-submodule-Ring r s)
353372 pr1 (pr2 mul-hom-left-submodule-Ring) {r} {s} =
354373 eq-htpy-hom-Ab
355374 ab-left-submodule-Ring
0 commit comments