|
| 1 | +# Cauchy approximations in metric quotients of pseudometric spaces |
| 2 | + |
| 3 | +```agda |
| 4 | +{-# OPTIONS --lossy-unification #-} |
| 5 | +
|
| 6 | +module metric-spaces.cauchy-approximations-metric-quotients-of-pseudometric-spaces where |
| 7 | +``` |
| 8 | + |
| 9 | +<details><summary>Imports</summary> |
| 10 | + |
| 11 | +```agda |
| 12 | +open import elementary-number-theory.addition-positive-rational-numbers |
| 13 | +open import elementary-number-theory.positive-rational-numbers |
| 14 | +
|
| 15 | +open import foundation.action-on-identifications-functions |
| 16 | +open import foundation.binary-relations |
| 17 | +open import foundation.binary-transport |
| 18 | +open import foundation.contractible-maps |
| 19 | +open import foundation.contractible-types |
| 20 | +open import foundation.dependent-pair-types |
| 21 | +open import foundation.equivalence-classes |
| 22 | +open import foundation.equivalences |
| 23 | +open import foundation.existential-quantification |
| 24 | +open import foundation.fibers-of-maps |
| 25 | +open import foundation.function-types |
| 26 | +open import foundation.functoriality-dependent-pair-types |
| 27 | +open import foundation.homotopies |
| 28 | +open import foundation.identity-types |
| 29 | +open import foundation.inhabited-subtypes |
| 30 | +open import foundation.logical-equivalences |
| 31 | +open import foundation.propositional-truncations |
| 32 | +open import foundation.propositions |
| 33 | +open import foundation.reflecting-maps-equivalence-relations |
| 34 | +open import foundation.retractions |
| 35 | +open import foundation.sections |
| 36 | +open import foundation.set-quotients |
| 37 | +open import foundation.sets |
| 38 | +open import foundation.subtypes |
| 39 | +open import foundation.transport-along-identifications |
| 40 | +open import foundation.universal-property-set-quotients |
| 41 | +open import foundation.universe-levels |
| 42 | +
|
| 43 | +open import logic.functoriality-existential-quantification |
| 44 | +
|
| 45 | +open import metric-spaces.cauchy-approximations-metric-spaces |
| 46 | +open import metric-spaces.cauchy-approximations-pseudometric-spaces |
| 47 | +open import metric-spaces.cauchy-pseudocompletion-of-metric-spaces |
| 48 | +open import metric-spaces.cauchy-pseudocompletion-of-pseudometric-spaces |
| 49 | +open import metric-spaces.complete-metric-spaces |
| 50 | +open import metric-spaces.convergent-cauchy-approximations-metric-spaces |
| 51 | +open import metric-spaces.equality-of-metric-spaces |
| 52 | +open import metric-spaces.extensionality-pseudometric-spaces |
| 53 | +open import metric-spaces.functions-metric-spaces |
| 54 | +open import metric-spaces.isometries-metric-spaces |
| 55 | +open import metric-spaces.isometries-pseudometric-spaces |
| 56 | +open import metric-spaces.limits-of-cauchy-approximations-metric-spaces |
| 57 | +open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces |
| 58 | +open import metric-spaces.metric-quotients-of-pseudometric-spaces |
| 59 | +open import metric-spaces.metric-spaces |
| 60 | +open import metric-spaces.pseudometric-spaces |
| 61 | +open import metric-spaces.rational-neighborhood-relations |
| 62 | +open import metric-spaces.short-functions-metric-spaces |
| 63 | +open import metric-spaces.short-functions-pseudometric-spaces |
| 64 | +open import metric-spaces.similarity-of-elements-pseudometric-spaces |
| 65 | +``` |
| 66 | + |
| 67 | +</details> |
| 68 | + |
| 69 | +## Idea |
| 70 | + |
| 71 | +The pointwise [quotients](foundation.set-quotients.md) of |
| 72 | +[Cauchy approximations](metric-spaces.cauchy-approximations-pseudometric-spaces.md) |
| 73 | +by the |
| 74 | +[similarity relation](metric-spaces.similarity-of-elements-pseudometric-spaces.md) |
| 75 | +of the [pseudometric space](metric-spaces.pseudometric-spaces.md) are Cauchy |
| 76 | +approximations in the |
| 77 | +[metric quotient](metric-spaces.metric-quotients-of-pseudometric-spaces.md). A |
| 78 | +Cauchy approximation in the metric quotient of a pseudometric space has a |
| 79 | +{{#concept "lift up to similarity" Agda=has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space}} |
| 80 | +if it is similar (in the |
| 81 | +[Cauchy pseudocompletion](metric-spaces.cauchy-pseudocompletion-of-metric-spaces.md) |
| 82 | +of the metric quotient) to the pointwise quotient of |
| 83 | +[some](foundation.existential-quantification.md) Cauchy approximation in the |
| 84 | +pseudometric space. |
| 85 | + |
| 86 | +The pointwise quotient of Cauchy approximations preserves |
| 87 | +[limits](metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces.md). |
| 88 | +The pointwise quotient of a Cauchy approximation has a lift. A Cauchy |
| 89 | +approximation that admits a |
| 90 | +[limit](metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces.md) |
| 91 | +has a lift. If the metric quotient is |
| 92 | +[complete](metric-spaces.complete-metric-spaces.md), then all Cauchy |
| 93 | +approximations in the metric quotient have a lift. |
| 94 | + |
| 95 | +## Definitions |
| 96 | + |
| 97 | +### The pointwise quotient Cauchy approximation of a Cauchy approximation in a pseudometric space |
| 98 | + |
| 99 | +```agda |
| 100 | +module _ |
| 101 | + {l1 l2 : Level} (M : Pseudometric-Space l1 l2) |
| 102 | + where |
| 103 | +
|
| 104 | + short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space : |
| 105 | + short-function-Pseudometric-Space |
| 106 | + ( cauchy-pseudocompletion-Pseudometric-Space M) |
| 107 | + ( cauchy-pseudocompletion-Metric-Space |
| 108 | + ( metric-quotient-Pseudometric-Space M)) |
| 109 | + short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space = |
| 110 | + short-map-short-function-cauchy-approximation-Pseudometric-Space |
| 111 | + ( M) |
| 112 | + ( pseudometric-metric-quotient-Pseudometric-Space M) |
| 113 | + ( short-map-metric-quotient-Pseudometric-Space M) |
| 114 | +
|
| 115 | + map-metric-quotient-cauchy-approximation-Pseudometric-Space : |
| 116 | + cauchy-approximation-Pseudometric-Space M → |
| 117 | + cauchy-approximation-Metric-Space |
| 118 | + ( metric-quotient-Pseudometric-Space M) |
| 119 | + map-metric-quotient-cauchy-approximation-Pseudometric-Space = |
| 120 | + map-short-function-Pseudometric-Space |
| 121 | + ( cauchy-pseudocompletion-Pseudometric-Space M) |
| 122 | + ( cauchy-pseudocompletion-Metric-Space |
| 123 | + ( metric-quotient-Pseudometric-Space M)) |
| 124 | + ( short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space) |
| 125 | +
|
| 126 | + is-short-map-metric-quotient-cauchy-approximation-Pseudometric-Space : |
| 127 | + is-short-function-Pseudometric-Space |
| 128 | + ( cauchy-pseudocompletion-Pseudometric-Space M) |
| 129 | + ( cauchy-pseudocompletion-Metric-Space |
| 130 | + ( metric-quotient-Pseudometric-Space M)) |
| 131 | + ( map-metric-quotient-cauchy-approximation-Pseudometric-Space) |
| 132 | + is-short-map-metric-quotient-cauchy-approximation-Pseudometric-Space = |
| 133 | + is-short-map-short-function-Pseudometric-Space |
| 134 | + ( cauchy-pseudocompletion-Pseudometric-Space M) |
| 135 | + ( cauchy-pseudocompletion-Metric-Space |
| 136 | + ( metric-quotient-Pseudometric-Space M)) |
| 137 | + ( short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space) |
| 138 | +``` |
| 139 | + |
| 140 | +### Lifts of Cauchy approximations in the quotient metric space up to similarity |
| 141 | + |
| 142 | +```agda |
| 143 | +module _ |
| 144 | + { l1 l2 : Level} (A : Pseudometric-Space l1 l2) |
| 145 | + ( u : |
| 146 | + cauchy-approximation-Metric-Space |
| 147 | + ( metric-quotient-Pseudometric-Space A)) |
| 148 | + ( v : cauchy-approximation-Pseudometric-Space A) |
| 149 | + where |
| 150 | +
|
| 151 | + is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space : |
| 152 | + Prop (l1 ⊔ l2) |
| 153 | + is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space = |
| 154 | + sim-prop-Pseudometric-Space |
| 155 | + ( cauchy-pseudocompletion-Pseudometric-Space |
| 156 | + ( pseudometric-metric-quotient-Pseudometric-Space A)) |
| 157 | + ( u) |
| 158 | + ( map-metric-quotient-cauchy-approximation-Pseudometric-Space A v) |
| 159 | +
|
| 160 | + is-lift-quotient-cauchy-approximation-Pseudometric-Space : UU (l1 ⊔ l2) |
| 161 | + is-lift-quotient-cauchy-approximation-Pseudometric-Space = |
| 162 | + type-Prop is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space |
| 163 | +
|
| 164 | + is-prop-is-lift-quotient-cauchy-approximation-Pseudometric-Space : |
| 165 | + is-prop is-lift-quotient-cauchy-approximation-Pseudometric-Space |
| 166 | + is-prop-is-lift-quotient-cauchy-approximation-Pseudometric-Space = |
| 167 | + is-prop-type-Prop |
| 168 | + is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space |
| 169 | +
|
| 170 | +module _ |
| 171 | + {l1 l2 : Level} (A : Pseudometric-Space l1 l2) |
| 172 | + ( u : |
| 173 | + cauchy-approximation-Metric-Space |
| 174 | + ( metric-quotient-Pseudometric-Space A)) |
| 175 | + where |
| 176 | +
|
| 177 | + has-lift-prop-cauchy-approximation-metric-quotient-Pseudometric-Space : |
| 178 | + Prop (l1 ⊔ l2) |
| 179 | + has-lift-prop-cauchy-approximation-metric-quotient-Pseudometric-Space = |
| 180 | + ∃ ( cauchy-approximation-Pseudometric-Space A) |
| 181 | + ( is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space A u) |
| 182 | +
|
| 183 | + has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space : |
| 184 | + UU (l1 ⊔ l2) |
| 185 | + has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space = |
| 186 | + type-Prop |
| 187 | + has-lift-prop-cauchy-approximation-metric-quotient-Pseudometric-Space |
| 188 | +
|
| 189 | + is-prop-has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space : |
| 190 | + is-prop has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space |
| 191 | + is-prop-has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space = |
| 192 | + is-prop-type-Prop |
| 193 | + has-lift-prop-cauchy-approximation-metric-quotient-Pseudometric-Space |
| 194 | +``` |
| 195 | + |
| 196 | +## Properties |
| 197 | + |
| 198 | +### The pointwise quotient of Cauchy approximations in the quotient metric space preserves limits |
| 199 | + |
| 200 | +```agda |
| 201 | +module _ |
| 202 | + {l1 l2 : Level} (M : Pseudometric-Space l1 l2) |
| 203 | + (u : cauchy-approximation-Pseudometric-Space M) |
| 204 | + (lim : type-Pseudometric-Space M) |
| 205 | + (is-lim : |
| 206 | + is-limit-cauchy-approximation-Pseudometric-Space M u lim) |
| 207 | + where |
| 208 | +
|
| 209 | + preserves-limit-map-metric-quotient-cauchy-approximation-Pseudometric-Space : |
| 210 | + is-limit-cauchy-approximation-Metric-Space |
| 211 | + ( metric-quotient-Pseudometric-Space M) |
| 212 | + ( map-metric-quotient-cauchy-approximation-Pseudometric-Space M u) |
| 213 | + ( map-metric-quotient-Pseudometric-Space M lim) |
| 214 | + preserves-limit-map-metric-quotient-cauchy-approximation-Pseudometric-Space |
| 215 | + ε δ (x , x∈uε) (y , y∈lim) = |
| 216 | + let |
| 217 | + lim~y : sim-Pseudometric-Space M lim y |
| 218 | + lim~y = |
| 219 | + sim-is-in-equivalence-class-quotient-map-set-quotient |
| 220 | + ( equivalence-relation-sim-Pseudometric-Space M) |
| 221 | + ( lim) |
| 222 | + ( y) |
| 223 | + ( y∈lim) |
| 224 | +
|
| 225 | + uε~x : |
| 226 | + sim-Pseudometric-Space M |
| 227 | + ( map-cauchy-approximation-Pseudometric-Space M u ε) |
| 228 | + ( x) |
| 229 | + uε~x = |
| 230 | + sim-is-in-equivalence-class-quotient-map-set-quotient |
| 231 | + ( equivalence-relation-sim-Pseudometric-Space M) |
| 232 | + ( map-cauchy-approximation-Pseudometric-Space M u ε) |
| 233 | + ( x) |
| 234 | + ( x∈uε) |
| 235 | + in |
| 236 | + preserves-neighborhood-sim-Pseudometric-Space |
| 237 | + ( M) |
| 238 | + ( uε~x) |
| 239 | + ( lim~y) |
| 240 | + ( ε +ℚ⁺ δ) |
| 241 | + ( is-lim ε δ) |
| 242 | +``` |
| 243 | + |
| 244 | +### Pointwise quotients of Cauchy approximations have lifts |
| 245 | + |
| 246 | +```agda |
| 247 | +module _ |
| 248 | + {l1 l2 : Level} (A : Pseudometric-Space l1 l2) |
| 249 | + (u : cauchy-approximation-Pseudometric-Space A) |
| 250 | + where |
| 251 | +
|
| 252 | + has-lift-map-quotient-cauchy-approximation-metric-quotient-Pseudometric-Space : |
| 253 | + has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space |
| 254 | + ( A) |
| 255 | + ( map-metric-quotient-cauchy-approximation-Pseudometric-Space A u) |
| 256 | + has-lift-map-quotient-cauchy-approximation-metric-quotient-Pseudometric-Space = |
| 257 | + unit-trunc-Prop |
| 258 | + ( u , |
| 259 | + refl-sim-Pseudometric-Space |
| 260 | + ( cauchy-pseudocompletion-Pseudometric-Space |
| 261 | + ( pseudometric-metric-quotient-Pseudometric-Space A)) |
| 262 | + ( map-metric-quotient-cauchy-approximation-Pseudometric-Space A u)) |
| 263 | +``` |
| 264 | + |
| 265 | +### Convergent Cauchy approximations in the quotient metric space have a lift up to similarity |
| 266 | + |
| 267 | +```agda |
| 268 | +module _ |
| 269 | + {l1 l2 : Level} (A : Pseudometric-Space l1 l2) |
| 270 | + ( u : |
| 271 | + cauchy-approximation-Metric-Space |
| 272 | + ( metric-quotient-Pseudometric-Space A)) |
| 273 | + ( lim : type-Metric-Space (metric-quotient-Pseudometric-Space A)) |
| 274 | + ( is-lim : |
| 275 | + is-limit-cauchy-approximation-Metric-Space |
| 276 | + ( metric-quotient-Pseudometric-Space A) |
| 277 | + ( u) |
| 278 | + ( lim)) |
| 279 | + where |
| 280 | +
|
| 281 | + lemma-sim-lift-is-limit-cauchy-approximation-metric-quotient-Pseudometric-Space : |
| 282 | + (x : type-Pseudometric-Space A) → |
| 283 | + (is-in-class-metric-quotient-Pseudometric-Space A lim x) → |
| 284 | + is-lift-quotient-cauchy-approximation-Pseudometric-Space |
| 285 | + ( A) |
| 286 | + ( u) |
| 287 | + ( const-cauchy-approximation-Pseudometric-Space A x) |
| 288 | + lemma-sim-lift-is-limit-cauchy-approximation-metric-quotient-Pseudometric-Space |
| 289 | + x x∈lim = |
| 290 | + transitive-sim-Pseudometric-Space |
| 291 | + ( cauchy-pseudocompletion-Pseudometric-Space |
| 292 | + ( pseudometric-metric-quotient-Pseudometric-Space A)) |
| 293 | + ( u) |
| 294 | + ( const-cauchy-approximation-Pseudometric-Space |
| 295 | + ( pseudometric-metric-quotient-Pseudometric-Space A) |
| 296 | + ( lim)) |
| 297 | + ( const-cauchy-approximation-Pseudometric-Space |
| 298 | + ( pseudometric-metric-quotient-Pseudometric-Space A) |
| 299 | + ( map-metric-quotient-Pseudometric-Space A x)) |
| 300 | + ( λ d α β → |
| 301 | + sim-eq-Pseudometric-Space |
| 302 | + ( pseudometric-metric-quotient-Pseudometric-Space A) |
| 303 | + ( lim) |
| 304 | + ( map-metric-quotient-Pseudometric-Space A x) |
| 305 | + ( inv |
| 306 | + ( eq-set-quotient-equivalence-class-set-quotient |
| 307 | + ( equivalence-relation-sim-Pseudometric-Space A) |
| 308 | + ( lim) |
| 309 | + ( x∈lim))) |
| 310 | + ( α +ℚ⁺ β +ℚ⁺ d)) |
| 311 | + ( sim-const-is-limit-cauchy-approximation-Pseudometric-Space |
| 312 | + ( pseudometric-metric-quotient-Pseudometric-Space A) |
| 313 | + ( u) |
| 314 | + ( lim) |
| 315 | + ( is-lim)) |
| 316 | +
|
| 317 | +module _ |
| 318 | + {l1 l2 : Level} (A : Pseudometric-Space l1 l2) |
| 319 | + ( u : |
| 320 | + cauchy-approximation-Metric-Space |
| 321 | + ( metric-quotient-Pseudometric-Space A)) |
| 322 | + where |
| 323 | +
|
| 324 | + has-lift-is-convergent-cauchy-approximation-metric-quotient-Pseudometric-Space : |
| 325 | + is-convergent-cauchy-approximation-Metric-Space |
| 326 | + ( metric-quotient-Pseudometric-Space A) |
| 327 | + ( u) → |
| 328 | + has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space A u |
| 329 | + has-lift-is-convergent-cauchy-approximation-metric-quotient-Pseudometric-Space |
| 330 | + (lim , is-lim) = |
| 331 | + map-exists |
| 332 | + ( is-lift-quotient-cauchy-approximation-Pseudometric-Space A u) |
| 333 | + ( const-cauchy-approximation-Pseudometric-Space A) |
| 334 | + ( lemma-sim-lift-is-limit-cauchy-approximation-metric-quotient-Pseudometric-Space |
| 335 | + ( A) |
| 336 | + ( u) |
| 337 | + ( lim) |
| 338 | + ( is-lim)) |
| 339 | + ( is-inhabited-class-metric-quotient-Pseudometric-Space A lim) |
| 340 | +``` |
| 341 | + |
| 342 | +### If the metric quotient of a pseudometric space is complete, all cauchy approximations have lifts up to similarity |
| 343 | + |
| 344 | +```agda |
| 345 | +module _ |
| 346 | + {l1 l2 : Level} (A : Pseudometric-Space l1 l2) |
| 347 | + (H : is-complete-Metric-Space (metric-quotient-Pseudometric-Space A)) |
| 348 | + (u : cauchy-approximation-Metric-Space (metric-quotient-Pseudometric-Space A)) |
| 349 | + where |
| 350 | +
|
| 351 | + has-lift-cauchy-approximation-is-complete-metric-quotient-Pseudometric-Space : |
| 352 | + has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space A u |
| 353 | + has-lift-cauchy-approximation-is-complete-metric-quotient-Pseudometric-Space = |
| 354 | + has-lift-is-convergent-cauchy-approximation-metric-quotient-Pseudometric-Space |
| 355 | + ( A) |
| 356 | + ( u) |
| 357 | + ( H u) |
| 358 | +``` |
0 commit comments