Skip to content

Commit 85c3d0c

Browse files
malarbollowasser
andauthored
Metric quotients of pseudometric spaces (#1622)
This PR introduces the notion of **metric quotient** of a pseudometric spaces: the metric space whose objects are quotient classes under the similarity relation in the pseudometric spaces and rational neighborhood relations given by neighborhoods of class-elements. This is a metric space isometric to the original pseudometric space. In case of metric spaces, this isometry is an isometric equivalence. Any short map (resp. isometry) from a pseudometric space to a metric space factors as a short map (resp. isometry) through the metric quotient. The module `cauchy-approximations-metric-quotients-of-pseudometric-spaces` introduces a few results regarding Cauchy approximations in pseudometric spaces and Cauchy approximations in their metric quotients. Co-authored-by: Louis Wasserman <[email protected]>
1 parent 9ce9fb1 commit 85c3d0c

File tree

4 files changed

+1294
-0
lines changed

4 files changed

+1294
-0
lines changed

src/metric-spaces.lagda.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -62,6 +62,7 @@ open import metric-spaces.bounded-distance-decompositions-of-metric-spaces publi
6262
open import metric-spaces.cartesian-products-metric-spaces public
6363
open import metric-spaces.category-of-metric-spaces-and-isometries public
6464
open import metric-spaces.category-of-metric-spaces-and-short-functions public
65+
open import metric-spaces.cauchy-approximations-metric-quotients-of-pseudometric-spaces public
6566
open import metric-spaces.cauchy-approximations-metric-spaces public
6667
open import metric-spaces.cauchy-approximations-pseudometric-spaces public
6768
open import metric-spaces.cauchy-pseudocompletion-of-metric-spaces public
@@ -103,6 +104,7 @@ open import metric-spaces.limits-of-sequences-metric-spaces public
103104
open import metric-spaces.lipschitz-functions-metric-spaces public
104105
open import metric-spaces.locally-constant-functions-metric-spaces public
105106
open import metric-spaces.located-metric-spaces public
107+
open import metric-spaces.metric-quotients-of-pseudometric-spaces public
106108
open import metric-spaces.metric-space-of-cauchy-approximations-complete-metric-spaces public
107109
open import metric-spaces.metric-space-of-cauchy-approximations-metric-spaces public
108110
open import metric-spaces.metric-space-of-convergent-cauchy-approximations-metric-spaces public
Lines changed: 358 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,358 @@
1+
# Cauchy approximations in metric quotients of pseudometric spaces
2+
3+
```agda
4+
{-# OPTIONS --lossy-unification #-}
5+
6+
module metric-spaces.cauchy-approximations-metric-quotients-of-pseudometric-spaces where
7+
```
8+
9+
<details><summary>Imports</summary>
10+
11+
```agda
12+
open import elementary-number-theory.addition-positive-rational-numbers
13+
open import elementary-number-theory.positive-rational-numbers
14+
15+
open import foundation.action-on-identifications-functions
16+
open import foundation.binary-relations
17+
open import foundation.binary-transport
18+
open import foundation.contractible-maps
19+
open import foundation.contractible-types
20+
open import foundation.dependent-pair-types
21+
open import foundation.equivalence-classes
22+
open import foundation.equivalences
23+
open import foundation.existential-quantification
24+
open import foundation.fibers-of-maps
25+
open import foundation.function-types
26+
open import foundation.functoriality-dependent-pair-types
27+
open import foundation.homotopies
28+
open import foundation.identity-types
29+
open import foundation.inhabited-subtypes
30+
open import foundation.logical-equivalences
31+
open import foundation.propositional-truncations
32+
open import foundation.propositions
33+
open import foundation.reflecting-maps-equivalence-relations
34+
open import foundation.retractions
35+
open import foundation.sections
36+
open import foundation.set-quotients
37+
open import foundation.sets
38+
open import foundation.subtypes
39+
open import foundation.transport-along-identifications
40+
open import foundation.universal-property-set-quotients
41+
open import foundation.universe-levels
42+
43+
open import logic.functoriality-existential-quantification
44+
45+
open import metric-spaces.cauchy-approximations-metric-spaces
46+
open import metric-spaces.cauchy-approximations-pseudometric-spaces
47+
open import metric-spaces.cauchy-pseudocompletion-of-metric-spaces
48+
open import metric-spaces.cauchy-pseudocompletion-of-pseudometric-spaces
49+
open import metric-spaces.complete-metric-spaces
50+
open import metric-spaces.convergent-cauchy-approximations-metric-spaces
51+
open import metric-spaces.equality-of-metric-spaces
52+
open import metric-spaces.extensionality-pseudometric-spaces
53+
open import metric-spaces.functions-metric-spaces
54+
open import metric-spaces.isometries-metric-spaces
55+
open import metric-spaces.isometries-pseudometric-spaces
56+
open import metric-spaces.limits-of-cauchy-approximations-metric-spaces
57+
open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces
58+
open import metric-spaces.metric-quotients-of-pseudometric-spaces
59+
open import metric-spaces.metric-spaces
60+
open import metric-spaces.pseudometric-spaces
61+
open import metric-spaces.rational-neighborhood-relations
62+
open import metric-spaces.short-functions-metric-spaces
63+
open import metric-spaces.short-functions-pseudometric-spaces
64+
open import metric-spaces.similarity-of-elements-pseudometric-spaces
65+
```
66+
67+
</details>
68+
69+
## Idea
70+
71+
The pointwise [quotients](foundation.set-quotients.md) of
72+
[Cauchy approximations](metric-spaces.cauchy-approximations-pseudometric-spaces.md)
73+
by the
74+
[similarity relation](metric-spaces.similarity-of-elements-pseudometric-spaces.md)
75+
of the [pseudometric space](metric-spaces.pseudometric-spaces.md) are Cauchy
76+
approximations in the
77+
[metric quotient](metric-spaces.metric-quotients-of-pseudometric-spaces.md). A
78+
Cauchy approximation in the metric quotient of a pseudometric space has a
79+
{{#concept "lift up to similarity" Agda=has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space}}
80+
if it is similar (in the
81+
[Cauchy pseudocompletion](metric-spaces.cauchy-pseudocompletion-of-metric-spaces.md)
82+
of the metric quotient) to the pointwise quotient of
83+
[some](foundation.existential-quantification.md) Cauchy approximation in the
84+
pseudometric space.
85+
86+
The pointwise quotient of Cauchy approximations preserves
87+
[limits](metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces.md).
88+
The pointwise quotient of a Cauchy approximation has a lift. A Cauchy
89+
approximation that admits a
90+
[limit](metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces.md)
91+
has a lift. If the metric quotient is
92+
[complete](metric-spaces.complete-metric-spaces.md), then all Cauchy
93+
approximations in the metric quotient have a lift.
94+
95+
## Definitions
96+
97+
### The pointwise quotient Cauchy approximation of a Cauchy approximation in a pseudometric space
98+
99+
```agda
100+
module _
101+
{l1 l2 : Level} (M : Pseudometric-Space l1 l2)
102+
where
103+
104+
short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space :
105+
short-function-Pseudometric-Space
106+
( cauchy-pseudocompletion-Pseudometric-Space M)
107+
( cauchy-pseudocompletion-Metric-Space
108+
( metric-quotient-Pseudometric-Space M))
109+
short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space =
110+
short-map-short-function-cauchy-approximation-Pseudometric-Space
111+
( M)
112+
( pseudometric-metric-quotient-Pseudometric-Space M)
113+
( short-map-metric-quotient-Pseudometric-Space M)
114+
115+
map-metric-quotient-cauchy-approximation-Pseudometric-Space :
116+
cauchy-approximation-Pseudometric-Space M →
117+
cauchy-approximation-Metric-Space
118+
( metric-quotient-Pseudometric-Space M)
119+
map-metric-quotient-cauchy-approximation-Pseudometric-Space =
120+
map-short-function-Pseudometric-Space
121+
( cauchy-pseudocompletion-Pseudometric-Space M)
122+
( cauchy-pseudocompletion-Metric-Space
123+
( metric-quotient-Pseudometric-Space M))
124+
( short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space)
125+
126+
is-short-map-metric-quotient-cauchy-approximation-Pseudometric-Space :
127+
is-short-function-Pseudometric-Space
128+
( cauchy-pseudocompletion-Pseudometric-Space M)
129+
( cauchy-pseudocompletion-Metric-Space
130+
( metric-quotient-Pseudometric-Space M))
131+
( map-metric-quotient-cauchy-approximation-Pseudometric-Space)
132+
is-short-map-metric-quotient-cauchy-approximation-Pseudometric-Space =
133+
is-short-map-short-function-Pseudometric-Space
134+
( cauchy-pseudocompletion-Pseudometric-Space M)
135+
( cauchy-pseudocompletion-Metric-Space
136+
( metric-quotient-Pseudometric-Space M))
137+
( short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space)
138+
```
139+
140+
### Lifts of Cauchy approximations in the quotient metric space up to similarity
141+
142+
```agda
143+
module _
144+
{ l1 l2 : Level} (A : Pseudometric-Space l1 l2)
145+
( u :
146+
cauchy-approximation-Metric-Space
147+
( metric-quotient-Pseudometric-Space A))
148+
( v : cauchy-approximation-Pseudometric-Space A)
149+
where
150+
151+
is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space :
152+
Prop (l1 ⊔ l2)
153+
is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space =
154+
sim-prop-Pseudometric-Space
155+
( cauchy-pseudocompletion-Pseudometric-Space
156+
( pseudometric-metric-quotient-Pseudometric-Space A))
157+
( u)
158+
( map-metric-quotient-cauchy-approximation-Pseudometric-Space A v)
159+
160+
is-lift-quotient-cauchy-approximation-Pseudometric-Space : UU (l1 ⊔ l2)
161+
is-lift-quotient-cauchy-approximation-Pseudometric-Space =
162+
type-Prop is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space
163+
164+
is-prop-is-lift-quotient-cauchy-approximation-Pseudometric-Space :
165+
is-prop is-lift-quotient-cauchy-approximation-Pseudometric-Space
166+
is-prop-is-lift-quotient-cauchy-approximation-Pseudometric-Space =
167+
is-prop-type-Prop
168+
is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space
169+
170+
module _
171+
{l1 l2 : Level} (A : Pseudometric-Space l1 l2)
172+
( u :
173+
cauchy-approximation-Metric-Space
174+
( metric-quotient-Pseudometric-Space A))
175+
where
176+
177+
has-lift-prop-cauchy-approximation-metric-quotient-Pseudometric-Space :
178+
Prop (l1 ⊔ l2)
179+
has-lift-prop-cauchy-approximation-metric-quotient-Pseudometric-Space =
180+
∃ ( cauchy-approximation-Pseudometric-Space A)
181+
( is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space A u)
182+
183+
has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space :
184+
UU (l1 ⊔ l2)
185+
has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space =
186+
type-Prop
187+
has-lift-prop-cauchy-approximation-metric-quotient-Pseudometric-Space
188+
189+
is-prop-has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space :
190+
is-prop has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space
191+
is-prop-has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space =
192+
is-prop-type-Prop
193+
has-lift-prop-cauchy-approximation-metric-quotient-Pseudometric-Space
194+
```
195+
196+
## Properties
197+
198+
### The pointwise quotient of Cauchy approximations in the quotient metric space preserves limits
199+
200+
```agda
201+
module _
202+
{l1 l2 : Level} (M : Pseudometric-Space l1 l2)
203+
(u : cauchy-approximation-Pseudometric-Space M)
204+
(lim : type-Pseudometric-Space M)
205+
(is-lim :
206+
is-limit-cauchy-approximation-Pseudometric-Space M u lim)
207+
where
208+
209+
preserves-limit-map-metric-quotient-cauchy-approximation-Pseudometric-Space :
210+
is-limit-cauchy-approximation-Metric-Space
211+
( metric-quotient-Pseudometric-Space M)
212+
( map-metric-quotient-cauchy-approximation-Pseudometric-Space M u)
213+
( map-metric-quotient-Pseudometric-Space M lim)
214+
preserves-limit-map-metric-quotient-cauchy-approximation-Pseudometric-Space
215+
ε δ (x , x∈uε) (y , y∈lim) =
216+
let
217+
lim~y : sim-Pseudometric-Space M lim y
218+
lim~y =
219+
sim-is-in-equivalence-class-quotient-map-set-quotient
220+
( equivalence-relation-sim-Pseudometric-Space M)
221+
( lim)
222+
( y)
223+
( y∈lim)
224+
225+
uε~x :
226+
sim-Pseudometric-Space M
227+
( map-cauchy-approximation-Pseudometric-Space M u ε)
228+
( x)
229+
uε~x =
230+
sim-is-in-equivalence-class-quotient-map-set-quotient
231+
( equivalence-relation-sim-Pseudometric-Space M)
232+
( map-cauchy-approximation-Pseudometric-Space M u ε)
233+
( x)
234+
( x∈uε)
235+
in
236+
preserves-neighborhood-sim-Pseudometric-Space
237+
( M)
238+
( uε~x)
239+
( lim~y)
240+
( ε +ℚ⁺ δ)
241+
( is-lim ε δ)
242+
```
243+
244+
### Pointwise quotients of Cauchy approximations have lifts
245+
246+
```agda
247+
module _
248+
{l1 l2 : Level} (A : Pseudometric-Space l1 l2)
249+
(u : cauchy-approximation-Pseudometric-Space A)
250+
where
251+
252+
has-lift-map-quotient-cauchy-approximation-metric-quotient-Pseudometric-Space :
253+
has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space
254+
( A)
255+
( map-metric-quotient-cauchy-approximation-Pseudometric-Space A u)
256+
has-lift-map-quotient-cauchy-approximation-metric-quotient-Pseudometric-Space =
257+
unit-trunc-Prop
258+
( u ,
259+
refl-sim-Pseudometric-Space
260+
( cauchy-pseudocompletion-Pseudometric-Space
261+
( pseudometric-metric-quotient-Pseudometric-Space A))
262+
( map-metric-quotient-cauchy-approximation-Pseudometric-Space A u))
263+
```
264+
265+
### Convergent Cauchy approximations in the quotient metric space have a lift up to similarity
266+
267+
```agda
268+
module _
269+
{l1 l2 : Level} (A : Pseudometric-Space l1 l2)
270+
( u :
271+
cauchy-approximation-Metric-Space
272+
( metric-quotient-Pseudometric-Space A))
273+
( lim : type-Metric-Space (metric-quotient-Pseudometric-Space A))
274+
( is-lim :
275+
is-limit-cauchy-approximation-Metric-Space
276+
( metric-quotient-Pseudometric-Space A)
277+
( u)
278+
( lim))
279+
where
280+
281+
lemma-sim-lift-is-limit-cauchy-approximation-metric-quotient-Pseudometric-Space :
282+
(x : type-Pseudometric-Space A) →
283+
(is-in-class-metric-quotient-Pseudometric-Space A lim x) →
284+
is-lift-quotient-cauchy-approximation-Pseudometric-Space
285+
( A)
286+
( u)
287+
( const-cauchy-approximation-Pseudometric-Space A x)
288+
lemma-sim-lift-is-limit-cauchy-approximation-metric-quotient-Pseudometric-Space
289+
x x∈lim =
290+
transitive-sim-Pseudometric-Space
291+
( cauchy-pseudocompletion-Pseudometric-Space
292+
( pseudometric-metric-quotient-Pseudometric-Space A))
293+
( u)
294+
( const-cauchy-approximation-Pseudometric-Space
295+
( pseudometric-metric-quotient-Pseudometric-Space A)
296+
( lim))
297+
( const-cauchy-approximation-Pseudometric-Space
298+
( pseudometric-metric-quotient-Pseudometric-Space A)
299+
( map-metric-quotient-Pseudometric-Space A x))
300+
( λ d α β →
301+
sim-eq-Pseudometric-Space
302+
( pseudometric-metric-quotient-Pseudometric-Space A)
303+
( lim)
304+
( map-metric-quotient-Pseudometric-Space A x)
305+
( inv
306+
( eq-set-quotient-equivalence-class-set-quotient
307+
( equivalence-relation-sim-Pseudometric-Space A)
308+
( lim)
309+
( x∈lim)))
310+
( α +ℚ⁺ β +ℚ⁺ d))
311+
( sim-const-is-limit-cauchy-approximation-Pseudometric-Space
312+
( pseudometric-metric-quotient-Pseudometric-Space A)
313+
( u)
314+
( lim)
315+
( is-lim))
316+
317+
module _
318+
{l1 l2 : Level} (A : Pseudometric-Space l1 l2)
319+
( u :
320+
cauchy-approximation-Metric-Space
321+
( metric-quotient-Pseudometric-Space A))
322+
where
323+
324+
has-lift-is-convergent-cauchy-approximation-metric-quotient-Pseudometric-Space :
325+
is-convergent-cauchy-approximation-Metric-Space
326+
( metric-quotient-Pseudometric-Space A)
327+
( u) →
328+
has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space A u
329+
has-lift-is-convergent-cauchy-approximation-metric-quotient-Pseudometric-Space
330+
(lim , is-lim) =
331+
map-exists
332+
( is-lift-quotient-cauchy-approximation-Pseudometric-Space A u)
333+
( const-cauchy-approximation-Pseudometric-Space A)
334+
( lemma-sim-lift-is-limit-cauchy-approximation-metric-quotient-Pseudometric-Space
335+
( A)
336+
( u)
337+
( lim)
338+
( is-lim))
339+
( is-inhabited-class-metric-quotient-Pseudometric-Space A lim)
340+
```
341+
342+
### If the metric quotient of a pseudometric space is complete, all cauchy approximations have lifts up to similarity
343+
344+
```agda
345+
module _
346+
{l1 l2 : Level} (A : Pseudometric-Space l1 l2)
347+
(H : is-complete-Metric-Space (metric-quotient-Pseudometric-Space A))
348+
(u : cauchy-approximation-Metric-Space (metric-quotient-Pseudometric-Space A))
349+
where
350+
351+
has-lift-cauchy-approximation-is-complete-metric-quotient-Pseudometric-Space :
352+
has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space A u
353+
has-lift-cauchy-approximation-is-complete-metric-quotient-Pseudometric-Space =
354+
has-lift-is-convergent-cauchy-approximation-metric-quotient-Pseudometric-Space
355+
( A)
356+
( u)
357+
( H u)
358+
```

0 commit comments

Comments
 (0)