|
38 | 38 | { |
39 | 39 | "data": { |
40 | 40 | "application/vnd.jupyter.widget-view+json": { |
41 | | - "model_id": "351a9be21f444cfc90440176e41763d5", |
| 41 | + "model_id": "da69c728429643ca867244061497eeca", |
42 | 42 | "version_major": 2, |
43 | 43 | "version_minor": 0 |
44 | 44 | }, |
45 | 45 | "text/plain": [ |
46 | | - "Validating dataset format (num_proc=10): 0%| | 0/270 [00:00<?, ? examples/s]" |
| 46 | + "Validating dataset format (num_proc=48): 0%| | 0/270 [00:00<?, ? examples/s]" |
| 47 | + ] |
| 48 | + }, |
| 49 | + "metadata": {}, |
| 50 | + "output_type": "display_data" |
| 51 | + }, |
| 52 | + { |
| 53 | + "data": { |
| 54 | + "application/vnd.jupyter.widget-view+json": { |
| 55 | + "model_id": "b285297ae35c45ceac7c55115bded869", |
| 56 | + "version_major": 2, |
| 57 | + "version_minor": 0 |
| 58 | + }, |
| 59 | + "text/plain": [ |
| 60 | + "Filtering short time series (num_proc=48): 0%| | 0/270 [00:00<?, ? examples/s]" |
| 61 | + ] |
| 62 | + }, |
| 63 | + "metadata": {}, |
| 64 | + "output_type": "display_data" |
| 65 | + }, |
| 66 | + { |
| 67 | + "data": { |
| 68 | + "application/vnd.jupyter.widget-view+json": { |
| 69 | + "model_id": "5d148bdd05444470a6e8387d74f0e5ef", |
| 70 | + "version_major": 2, |
| 71 | + "version_minor": 0 |
| 72 | + }, |
| 73 | + "text/plain": [ |
| 74 | + "Selecting past data (num_proc=48): 0%| | 0/270 [00:00<?, ? examples/s]" |
| 75 | + ] |
| 76 | + }, |
| 77 | + "metadata": {}, |
| 78 | + "output_type": "display_data" |
| 79 | + }, |
| 80 | + { |
| 81 | + "data": { |
| 82 | + "application/vnd.jupyter.widget-view+json": { |
| 83 | + "model_id": "cad0f53a10854ebba967c941804e2616", |
| 84 | + "version_major": 2, |
| 85 | + "version_minor": 0 |
| 86 | + }, |
| 87 | + "text/plain": [ |
| 88 | + "Selecting future data (num_proc=48): 0%| | 0/270 [00:00<?, ? examples/s]" |
47 | 89 | ] |
48 | 90 | }, |
49 | 91 | "metadata": {}, |
|
87 | 129 | { |
88 | 130 | "data": { |
89 | 131 | "text/plain": [ |
90 | | - "{'id': np.str_('T000000'),\n", |
| 132 | + "{'id': 'T000000',\n", |
91 | 133 | " 'timestamp': array(['2017-01-01T14:00:00.000', '2017-01-01T15:00:00.000',\n", |
92 | 134 | " '2017-01-01T16:00:00.000', ..., '2018-03-31T01:00:00.000',\n", |
93 | 135 | " '2018-03-31T02:00:00.000', '2018-03-31T03:00:00.000'],\n", |
94 | 136 | " dtype='datetime64[ms]'),\n", |
95 | 137 | " 'target': array([453., 417., 395., ..., 99., 102., 97.], dtype=float32),\n", |
96 | | - " 'city': np.str_('Beijing'),\n", |
97 | | - " 'station': np.str_('aotizhongxin_aq'),\n", |
98 | | - " 'measurement': np.str_('PM2.5')}" |
| 138 | + " 'city': 'Beijing',\n", |
| 139 | + " 'station': 'aotizhongxin_aq',\n", |
| 140 | + " 'measurement': 'PM2.5'}" |
99 | 141 | ] |
100 | 142 | }, |
101 | 143 | "execution_count": 5, |
|
139 | 181 | { |
140 | 182 | "data": { |
141 | 183 | "text/plain": [ |
142 | | - "{'id': np.str_('T000000'),\n", |
| 184 | + "{'id': 'T000000',\n", |
143 | 185 | " 'timestamp': array(['2018-03-31T04:00:00.000', '2018-03-31T05:00:00.000',\n", |
144 | 186 | " '2018-03-31T06:00:00.000', '2018-03-31T07:00:00.000',\n", |
145 | 187 | " '2018-03-31T08:00:00.000', '2018-03-31T09:00:00.000',\n", |
146 | 188 | " '2018-03-31T10:00:00.000', '2018-03-31T11:00:00.000',\n", |
147 | 189 | " '2018-03-31T12:00:00.000', '2018-03-31T13:00:00.000',\n", |
148 | 190 | " '2018-03-31T14:00:00.000', '2018-03-31T15:00:00.000'],\n", |
149 | 191 | " dtype='datetime64[ms]'),\n", |
150 | | - " 'city': np.str_('Beijing'),\n", |
151 | | - " 'station': np.str_('aotizhongxin_aq'),\n", |
152 | | - " 'measurement': np.str_('PM2.5')}" |
| 192 | + " 'city': 'Beijing',\n", |
| 193 | + " 'station': 'aotizhongxin_aq',\n", |
| 194 | + " 'measurement': 'PM2.5'}" |
153 | 195 | ] |
154 | 196 | }, |
155 | 197 | "execution_count": 7, |
|
189 | 231 | { |
190 | 232 | "data": { |
191 | 233 | "application/vnd.jupyter.widget-view+json": { |
192 | | - "model_id": "3034f4b2cdc3471eac2bc3caeab28d75", |
| 234 | + "model_id": "5a5df4eb7fd94875a6b9fb0cf4f757c8", |
193 | 235 | "version_major": 2, |
194 | 236 | "version_minor": 0 |
195 | 237 | }, |
|
200 | 242 | "metadata": {}, |
201 | 243 | "output_type": "display_data" |
202 | 244 | }, |
| 245 | + { |
| 246 | + "data": { |
| 247 | + "application/vnd.jupyter.widget-view+json": { |
| 248 | + "model_id": "fc07c39251fb416a8de6b007b43490fa", |
| 249 | + "version_major": 2, |
| 250 | + "version_minor": 0 |
| 251 | + }, |
| 252 | + "text/plain": [ |
| 253 | + "Map (num_proc=48): 0%| | 0/270 [00:00<?, ? examples/s]" |
| 254 | + ] |
| 255 | + }, |
| 256 | + "metadata": {}, |
| 257 | + "output_type": "display_data" |
| 258 | + }, |
203 | 259 | { |
204 | 260 | "data": { |
205 | 261 | "text/plain": [ |
|
210 | 266 | " 'horizon': 12,\n", |
211 | 267 | " 'cutoff': -12,\n", |
212 | 268 | " 'lead_time': 1,\n", |
213 | | - " 'min_ts_length': 13,\n", |
| 269 | + " 'min_context_length': 1,\n", |
214 | 270 | " 'max_context_length': None,\n", |
215 | 271 | " 'seasonality': 1,\n", |
216 | 272 | " 'eval_metric': 'MASE',\n", |
|
219 | 275 | " 'id_column': 'id',\n", |
220 | 276 | " 'timestamp_column': 'timestamp',\n", |
221 | 277 | " 'target_column': 'target',\n", |
222 | | - " 'multiple_target_columns': None,\n", |
| 278 | + " 'generate_univariate_targets_from': None,\n", |
223 | 279 | " 'past_dynamic_columns': [],\n", |
224 | 280 | " 'excluded_columns': [],\n", |
225 | 281 | " 'test_error': 3.3784518866750513,\n", |
226 | 282 | " 'training_time_s': None,\n", |
227 | 283 | " 'inference_time_s': None,\n", |
228 | | - " 'dataset_fingerprint': 'e91f446bd0b05d16',\n", |
| 284 | + " 'dataset_fingerprint': 'a22d13d4c1e8641c',\n", |
229 | 285 | " 'trained_on_this_dataset': False,\n", |
230 | | - " 'fev_version': '0.2.1',\n", |
| 286 | + " 'fev_version': '0.5.0',\n", |
231 | 287 | " 'MASE': 3.3784518866750513}" |
232 | 288 | ] |
233 | 289 | }, |
|
250 | 306 | }, |
251 | 307 | { |
252 | 308 | "cell_type": "code", |
253 | | - "execution_count": null, |
| 309 | + "execution_count": 10, |
254 | 310 | "metadata": {}, |
255 | 311 | "outputs": [ |
256 | 312 | { |
|
634 | 690 | "name": "python", |
635 | 691 | "nbconvert_exporter": "python", |
636 | 692 | "pygments_lexer": "ipython3", |
637 | | - "version": "3.11.10" |
| 693 | + "version": "3.11.11" |
638 | 694 | } |
639 | 695 | }, |
640 | 696 | "nbformat": 4, |
|
0 commit comments