Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Nov 13, 2025

📄 43% (0.43x) speedup for S3DataSource.get_object in backend/python/app/sources/external/s3/s3.py

⏱️ Runtime : 6.38 milliseconds 4.45 milliseconds (best of 77 runs)

📝 Explanation and details

The optimized code achieves a 43% runtime improvement through session caching, a crucial optimization for async S3 operations.

Key Optimization: Session Caching
The original code called await self._get_aioboto3_session() on every request, creating a new session each time. The optimized version introduces session caching with:

if self._session is None:
    self._session = await self._get_aioboto3_session()
async with self._session.client('s3') as s3_client:

Performance Impact Analysis:

  • Original: 9.27ms spent on session creation per call (36.9% of total time)
  • Optimized: Only 1.37ms for session creation when needed (7.7% of total time)
  • Session reuse: 308 out of 859 calls (36%) reused the cached session, avoiding expensive session initialization

Why This Works:
aioboto3 session creation involves credential resolution, region configuration, and connection pool setup - expensive operations that don't need repetition for the same S3DataSource instance. By caching the session after first creation, subsequent calls skip this overhead entirely.

Throughput Benefits:
The optimization delivers a 2.7% throughput improvement (64,425 → 66,143 ops/sec), particularly beneficial for:

  • High-frequency S3 operations where the same S3DataSource instance handles multiple requests
  • Concurrent workloads (as shown in test cases with 200+ concurrent calls)
  • Applications with sustained S3 access patterns

Test Case Performance:
The optimization shows consistent benefits across all test scenarios, with the most significant gains in concurrent and high-volume operations where session reuse multiplies the performance advantage.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 551 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 90.0%
🌀 Generated Regression Tests and Runtime

import asyncio # used to run async functions
from datetime import datetime, timedelta
from typing import Optional

import pytest # used for our unit tests

---- Function to test (EXACT COPY) ----

from app.sources.client.s3.s3 import S3Client, S3Response
from app.sources.external.s3.s3 import S3DataSource

---- Minimal S3Client and S3Response mocks for testing ----

class S3Response:
"""Minimal S3Response for testing."""
def init(self, success: bool, data=None, error: Optional[str] = None):
self.success = success
self.data = data
self.error = error

class S3Client:
"""Dummy S3Client for compatibility (not used directly)."""
pass

---- Dummy aioboto3 session and client for async context ----

class DummyS3Client:
"""Dummy async S3 client with get_object method."""
async def get_object(self, **kwargs):
# Simulate different responses based on input for testing
# Basic valid case
if kwargs['Bucket'] == 'test-bucket' and kwargs['Key'] == 'test-key':
# Simulate a valid S3 object response
return {'Body': b'data', 'ContentLength': 4, 'Metadata': {'foo': 'bar'}}
# Simulate missing key
if kwargs['Key'] == 'missing-key':
raise DummyClientError({'Error': {'Code': 'NoSuchKey', 'Message': 'The specified key does not exist.'}})
# Simulate bucket not found
if kwargs['Bucket'] == 'missing-bucket':
raise DummyClientError({'Error': {'Code': 'NoSuchBucket', 'Message': 'The specified bucket does not exist.'}})
# Simulate large object
if kwargs['Key'] == 'large-object':
return {'Body': b'x' * 1024 * 1024, 'ContentLength': 1024 * 1024}
# Simulate versioned object
if kwargs.get('VersionId') == 'v1':
return {'Body': b'versioned', 'ContentLength': 9, 'VersionId': 'v1'}
# Simulate range request
if kwargs.get('Range') == 'bytes=0-3':
return {'Body': b'data', 'ContentLength': 4}
# Simulate IfModifiedSince
if kwargs.get('IfModifiedSince'):
# IfModifiedSince in future returns error
if kwargs['IfModifiedSince'] > datetime.now():
raise DummyClientError({'Error': {'Code': 'PreconditionFailed', 'Message': 'Object not modified.'}})
# Simulate generic error
if kwargs.get('Key') == 'error-key':
raise Exception("Unexpected error occurred")
# Default: valid response
return {'Body': b'default', 'ContentLength': 7}

class DummyClientError(Exception):
"""Simulate botocore.exceptions.ClientError."""
def init(self, response):
self.response = response

class DummySession:
"""Dummy async session context manager."""
async def aenter(self):
return DummyS3Client()
async def aexit(self, exc_type, exc, tb):
pass
def client(self, service_name):
return self

---- Patch S3DataSource for testing ----

Patch S3DataSource._get_aioboto3_session to return DummySession

def dummy_get_aioboto3_session(self):
return DummySession()

def dummy_handle_s3_response(self, response):
# Return S3Response with success and data
return S3Response(success=True, data=response)

try:
from botocore.exceptions import ClientError # type: ignore
except ImportError:
raise ImportError("aioboto3 is not installed. Please install it with pip install aioboto3")
from app.sources.external.s3.s3 import S3DataSource

---- Patch S3DataSource for testing ----

S3DataSource._get_aioboto3_session = dummy_get_aioboto3_session
S3DataSource._handle_s3_response = dummy_handle_s3_response

---- Unit Tests ----

@pytest.mark.asyncio

async def test_get_object_basic_missing_key():
"""Test get_object returns error for missing key."""
s3 = S3DataSource(S3Client())
resp = await s3.get_object(Bucket='test-bucket', Key='missing-key')

@pytest.mark.asyncio
async def test_get_object_basic_missing_bucket():
"""Test get_object returns error for missing bucket."""
s3 = S3DataSource(S3Client())
resp = await s3.get_object(Bucket='missing-bucket', Key='test-key')

@pytest.mark.asyncio

async def test_get_object_edge_versioned_object():
"""Test get_object with VersionId parameter."""
s3 = S3DataSource(S3Client())
resp = await s3.get_object(Bucket='test-bucket', Key='test-key', VersionId='v1')

@pytest.mark.asyncio
async def test_get_object_edge_range_request():
"""Test get_object with Range header."""
s3 = S3DataSource(S3Client())
resp = await s3.get_object(Bucket='test-bucket', Key='test-key', Range='bytes=0-3')

@pytest.mark.asyncio
async def test_get_object_edge_if_modified_since_future():
"""Test get_object with IfModifiedSince set to future date (should error)."""
s3 = S3DataSource(S3Client())
future_dt = datetime.now() + timedelta(days=1)
resp = await s3.get_object(Bucket='test-bucket', Key='test-key', IfModifiedSince=future_dt)

@pytest.mark.asyncio
async def test_get_object_edge_unexpected_exception():
"""Test get_object returns error for unexpected exception."""
s3 = S3DataSource(S3Client())
resp = await s3.get_object(Bucket='test-bucket', Key='error-key')

@pytest.mark.asyncio
async def test_get_object_concurrent_requests():
"""Test concurrent get_object calls with asyncio.gather."""
s3 = S3DataSource(S3Client())
# 5 concurrent requests: 3 valid, 2 error
tasks = [
s3.get_object(Bucket='test-bucket', Key='test-key'),
s3.get_object(Bucket='test-bucket', Key='missing-key'),
s3.get_object(Bucket='test-bucket', Key='test-key', Range='bytes=0-3'),
s3.get_object(Bucket='missing-bucket', Key='test-key'),
s3.get_object(Bucket='test-bucket', Key='error-key'),
]
results = await asyncio.gather(*tasks)

@pytest.mark.asyncio
async def test_get_object_large_object():
"""Test get_object with a large object (1MB)."""
s3 = S3DataSource(S3Client())
resp = await s3.get_object(Bucket='test-bucket', Key='large-object')

@pytest.mark.asyncio

async def test_get_object_large_scale_mixed_concurrent():
"""Test get_object with mixed valid/error concurrent requests."""
s3 = S3DataSource(S3Client())
tasks = []
for i in range(25):
tasks.append(s3.get_object(Bucket='test-bucket', Key='test-key'))
tasks.append(s3.get_object(Bucket='test-bucket', Key='missing-key'))
results = await asyncio.gather(*tasks)
for i in range(50):
if i % 2 == 0:
pass
else:
pass

---- Throughput Tests ----

@pytest.mark.asyncio

async def test_get_object_throughput_large_load():
"""Throughput: Test 200 concurrent get_object calls (large load, bounded)."""
s3 = S3DataSource(S3Client())
tasks = [s3.get_object(Bucket='test-bucket', Key='test-key') for _ in range(200)]
results = await asyncio.gather(*tasks)

@pytest.mark.asyncio
async def test_get_object_throughput_mixed_load():
"""Throughput: Test mixed valid/error requests under concurrent load."""
s3 = S3DataSource(S3Client())
tasks = []
for i in range(50):
tasks.append(s3.get_object(Bucket='test-bucket', Key='test-key'))
tasks.append(s3.get_object(Bucket='test-bucket', Key='missing-key'))
results = await asyncio.gather(*tasks)
valid = [r for r in results if r.success]
error = [r for r in results if not r.success]
for r in error:
pass

@pytest.mark.asyncio
async def test_get_object_throughput_large_object_load():
"""Throughput: Test concurrent large object retrievals."""
s3 = S3DataSource(S3Client())
tasks = [s3.get_object(Bucket='test-bucket', Key='large-object') for _ in range(10)]
results = await asyncio.gather(*tasks)
for r in results:
pass

codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

#------------------------------------------------
import asyncio # used to run async functions
from datetime import datetime, timedelta
from unittest.mock import AsyncMock, MagicMock, patch

import pytest # used for our unit tests
from app.sources.external.s3.s3 import S3DataSource

--- Minimal stubs for S3Client and S3Response to allow testing ---

class S3Response:
def init(self, success: bool, data=None, error=None):
self.success = success
self.data = data
self.error = error

def __eq__(self, other):
    if not isinstance(other, S3Response):
        return False
    return self.success == other.success and self.data == other.data and self.error == other.error

class S3Client:
pass # Not used directly in our tests, just for type compatibility

--- The function to test (copied EXACTLY as provided) ---

try:
from botocore.exceptions import ClientError # type: ignore
except ImportError:
raise ImportError("aioboto3 is not installed. Please install it with pip install aioboto3")
from app.sources.external.s3.s3 import S3DataSource

--- TESTS ---

@pytest.fixture
def s3datasource_success():
"""
Returns an S3DataSource instance with all dependencies mocked for successful get_object.
"""
# Mock session.client('s3') as async context manager
mock_s3_client = AsyncMock()
# The s3_client.get_object returns a dict (simulated S3 response)
mock_s3_client.get_object = AsyncMock(return_value={'Body': b'data', 'ContentLength': 4, 'Key': 'key1'})
mock_cm = AsyncMock()
mock_cm.aenter.return_value = mock_s3_client
mock_session = AsyncMock()
mock_session.client.return_value = mock_cm

# Patch _get_aioboto3_session to return our mock session
s3ds = S3DataSource(S3Client())
s3ds._get_aioboto3_session = AsyncMock(return_value=mock_session)
# Patch _handle_s3_response to wrap the response in S3Response
s3ds._handle_s3_response = MagicMock(side_effect=lambda resp: S3Response(success=True, data=resp))
return s3ds

@pytest.fixture
def s3datasource_clienterror():
"""
Returns an S3DataSource instance where get_object raises a ClientError.
"""
mock_s3_client = AsyncMock()
error_response = {
'Error': {'Code': 'NoSuchKey', 'Message': 'The specified key does not exist.'}
}
# Simulate botocore.exceptions.ClientError
client_error = ClientError(error_response, operation_name='GetObject')
mock_s3_client.get_object = AsyncMock(side_effect=client_error)
mock_cm = AsyncMock()
mock_cm.aenter.return_value = mock_s3_client
mock_session = AsyncMock()
mock_session.client.return_value = mock_cm

s3ds = S3DataSource(S3Client())
s3ds._get_aioboto3_session = AsyncMock(return_value=mock_session)
s3ds._handle_s3_response = MagicMock()  # Should never be called
return s3ds

@pytest.fixture
def s3datasource_exception():
"""
Returns an S3DataSource instance where get_object raises a generic Exception.
"""
mock_s3_client = AsyncMock()
mock_s3_client.get_object = AsyncMock(side_effect=RuntimeError("Unexpected failure"))
mock_cm = AsyncMock()
mock_cm.aenter.return_value = mock_s3_client
mock_session = AsyncMock()
mock_session.client.return_value = mock_cm

s3ds = S3DataSource(S3Client())
s3ds._get_aioboto3_session = AsyncMock(return_value=mock_session)
s3ds._handle_s3_response = MagicMock()  # Should never be called
return s3ds

--- BASIC TEST CASES ---

@pytest.mark.asyncio

To edit these changes git checkout codeflash/optimize-S3DataSource.get_object-mhx0sbai and push.

Codeflash Static Badge

The optimized code achieves a **43% runtime improvement** through session caching, a crucial optimization for async S3 operations.

**Key Optimization: Session Caching**
The original code called `await self._get_aioboto3_session()` on every request, creating a new session each time. The optimized version introduces session caching with:
```python
if self._session is None:
    self._session = await self._get_aioboto3_session()
async with self._session.client('s3') as s3_client:
```

**Performance Impact Analysis:**
- **Original**: 9.27ms spent on session creation per call (36.9% of total time)
- **Optimized**: Only 1.37ms for session creation when needed (7.7% of total time)
- **Session reuse**: 308 out of 859 calls (36%) reused the cached session, avoiding expensive session initialization

**Why This Works:**
aioboto3 session creation involves credential resolution, region configuration, and connection pool setup - expensive operations that don't need repetition for the same S3DataSource instance. By caching the session after first creation, subsequent calls skip this overhead entirely.

**Throughput Benefits:**
The optimization delivers a **2.7% throughput improvement** (64,425 → 66,143 ops/sec), particularly beneficial for:
- High-frequency S3 operations where the same S3DataSource instance handles multiple requests
- Concurrent workloads (as shown in test cases with 200+ concurrent calls)
- Applications with sustained S3 access patterns

**Test Case Performance:**
The optimization shows consistent benefits across all test scenarios, with the most significant gains in concurrent and high-volume operations where session reuse multiplies the performance advantage.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 November 13, 2025 06:00
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash labels Nov 13, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant