Skip to content

Commit 2fc77ad

Browse files
committed
docs
1 parent 44761f0 commit 2fc77ad

File tree

2 files changed

+43
-23
lines changed

2 files changed

+43
-23
lines changed

vignettes/SpectralGraphTopology.Rmd

Lines changed: 14 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -53,10 +53,15 @@ knit_hooks$set(pngquant = hook_pngquant)
5353
state-of-the-art algorithms designed to estimate graph matrices
5454
(Laplacian and Adjacency) from data, including:
5555

56-
* Structured Graph Laplacian (**SGL**): (i) S. Kumar, J. Ying, J. V. de Miranda Cardoso, and D. P. Palomar (2019). A unified framework for structured graph learning via spectral constraints. https://arxiv.org/abs/1904.09792. (ii) S. Kumar, J., Ying, J. V. de Miranda Cardoso, and D. P. Palomar, "Structured Graph Learning Via Laplacian Spectral Constraints", Advances in Neural Information Processing Systems (NeurIPS), Dec. 2019.
57-
* Combinatorial Graph Laplacian (**CGL**): H. E. Egilmez, E. Pavez and A. Ortega, "Graph Learning From Data Under Laplacian and Structural Constraints", IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825-841, Sept. 2017.
58-
* Constrained Laplacian Rank (**CLR**): N., Feiping, W., Xiaoqian, J., Michael I., and H., Heng. (2016). The Constrained Laplacian Rank Algorithm for Graph-based Clustering, AAAI’16.
59-
* Graph Laplacian Estimation (**GLE-MM** and **GLE-ADMM**): Licheng Zhao, Yiwei Wang, Sandeep Kumar, and Daniel P. Palomar, Optimization Algorithms for Graph Laplacian Estimation via ADMM and MM, IEEE Trans. on Signal Processing, vol. 67, no. 16, pp. 4231-4244, Aug. 2019
56+
* Structured Graph Laplacian (**SGL**)
57+
* S. Kumar, J. Ying, J. V. de Miranda Cardoso, and D. P. Palomar (2019). [A unified framework for structured graph learning via spectral constraints](https://arxiv.org/abs/1904.09792), ArXiv 2019.
58+
* S. Kumar, J., Ying, J. V. de Miranda Cardoso, and D. P. Palomar, [Structured graph learning via Laplacian spectral constraints"](https://arxiv.org/pdf/1909.11594.pdf), Advances in Neural Information Processing Systems (NeurIPS), Dec. 2019.
59+
* Combinatorial Graph Laplacian (**CGL**)
60+
* H. E. Egilmez, E. Pavez and A. Ortega, [Graph learning from data under Laplacian and structural constraints"](https://ieeexplore.ieee.org/document/7979524), IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825-841, Sept. 2017.
61+
* Constrained Laplacian Rank (**CLR**)
62+
* N., Feiping, W., Xiaoqian, J., Michael I., and H., Heng. (2016). [The constrained Laplacian rank algorithm for graph-based clustering](https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12416/11830), The Thirtieth AAAI Conference on Artificial Intelligence AAAI'16.
63+
* Graph Laplacian Estimation (**GLE-MM** and **GLE-ADMM**)
64+
* Licheng Zhao, Yiwei Wang, Sandeep Kumar, and Daniel P. Palomar, [Optimization algorithms for graph Laplacian estimation via ADMM and MM](https://ieeexplore.ieee.org/document/8747497), IEEE Trans. on Signal Processing, vol. 67, no. 16, pp. 4231-4244, Aug. 2019
6065

6166

6267
# Installation
@@ -247,15 +252,16 @@ legend("topright", legend=legend, col=colors, pch=pch, lty=lty, bty="n")
247252
```
248253

249254

250-
Let's also checkout the trend of the objective function for each algorithm:
255+
Let's also checkout the convergence curve of the objective function for each algorithm:
251256
```{r}
252257
graph_mm <- learn_laplacian_gle_mm(S = S, record_objective = TRUE, verbose = FALSE)
253258
graph_admm <- learn_laplacian_gle_admm(S = S, record_objective = TRUE, verbose = FALSE)
254259
graph_cgl <- learn_combinatorial_graph_laplacian(S = S, record_objective = TRUE, verbose = FALSE)
255-
plot(c(1:length(graph_mm$obj_fun)), graph_mm$obj_fun, xlab = "number of iterations",
260+
iter <- c(1:100)
261+
plot(iter, graph_mm$obj_fun[iter], xlab = "number of iterations",
256262
ylab = "Objective function value", type = "b", lty=lty[1], pch=pch[1],
257263
cex=.75, col = colors[1])
258-
lines(c(1:length(graph_admm$obj_fun)), graph_admm$obj_fun, type = "b", lty=lty[2], pch=pch[2],
264+
lines(iter, graph_admm$obj_fun[iter], type = "b", lty=lty[2], pch=pch[2],
259265
cex=.75, col = colors[2])
260266
lines(c(1:length(graph_cgl$obj_fun)), graph_cgl$obj_fun, type = "b", lty=lty[3], pch=pch[3],
261267
cex=.75, col = colors[3])
@@ -393,7 +399,7 @@ knitr::include_graphics(c("figures/circles2.png", "figures/helix3d.png",
393399

394400
## Learning a bipartite graph
395401

396-
In this experiment, we demonstrate how to learn a simple bipartite graph:
402+
In the experiments that follow, we demonstrate how to learn simple bipartite and block-bipartite graphs.
397403
```{r, message=FALSE}
398404
library(spectralGraphTopology)
399405
library(igraph)

vignettes/SpectralGraphTopology.html

Lines changed: 29 additions & 15 deletions
Large diffs are not rendered by default.

0 commit comments

Comments
 (0)