|
| 1 | +# SPDX-FileCopyrightText: 2022-present deepset GmbH <[email protected]> |
| 2 | +# |
| 3 | +# SPDX-License-Identifier: Apache-2.0 |
| 4 | + |
| 5 | +from typing import Any, Optional, Union |
| 6 | + |
| 7 | +from haystack import logging |
| 8 | +from haystack.components.agents.agent import Agent as HaystackAgent |
| 9 | +from haystack.components.agents.agent import _schema_from_dict |
| 10 | +from haystack.components.agents.state import replace_values |
| 11 | +from haystack.components.generators.chat.types import ChatGenerator |
| 12 | +from haystack.core.errors import PipelineRuntimeError |
| 13 | +from haystack.core.pipeline import AsyncPipeline, Pipeline |
| 14 | +from haystack.core.pipeline.breakpoint import ( |
| 15 | + _create_pipeline_snapshot_from_chat_generator, |
| 16 | + _create_pipeline_snapshot_from_tool_invoker, |
| 17 | +) |
| 18 | +from haystack.core.pipeline.utils import _deepcopy_with_exceptions |
| 19 | +from haystack.core.serialization import default_from_dict, import_class_by_name |
| 20 | +from haystack.dataclasses import ChatMessage |
| 21 | +from haystack.dataclasses.breakpoints import AgentBreakpoint, AgentSnapshot, ToolBreakpoint |
| 22 | +from haystack.dataclasses.streaming_chunk import StreamingCallbackT |
| 23 | +from haystack.tools import Tool, Toolset, ToolsType, deserialize_tools_or_toolset_inplace |
| 24 | +from haystack.utils.callable_serialization import deserialize_callable |
| 25 | +from haystack.utils.deserialization import deserialize_chatgenerator_inplace |
| 26 | + |
| 27 | +from haystack_experimental.memory.src.mem0.memory_store import Mem0MemoryStore |
| 28 | + |
| 29 | +logger = logging.getLogger(__name__) |
| 30 | + |
| 31 | + |
| 32 | +class Agent(HaystackAgent): |
| 33 | + """ |
| 34 | + A Haystack component that implements a memory-based agent. |
| 35 | +
|
| 36 | + :param memory_store: The memory store to use for the agent. |
| 37 | + :param user_id: The user ID for the agent. |
| 38 | + """ |
| 39 | + |
| 40 | + def __init__( |
| 41 | + self, |
| 42 | + *, |
| 43 | + chat_generator: ChatGenerator, |
| 44 | + tools: Optional[ToolsType] = None, |
| 45 | + memory_store: Optional[Mem0MemoryStore] = None, |
| 46 | + system_prompt: Optional[str] = None, |
| 47 | + exit_conditions: Optional[list[str]] = None, |
| 48 | + state_schema: Optional[dict[str, Any]] = None, |
| 49 | + max_agent_steps: int = 100, |
| 50 | + streaming_callback: Optional[StreamingCallbackT] = None, |
| 51 | + raise_on_tool_invocation_failure: bool = False, |
| 52 | + tool_invoker_kwargs: Optional[dict[str, Any]] = None, |
| 53 | + ) -> None: |
| 54 | + """ |
| 55 | + Initialize the agent component. |
| 56 | +
|
| 57 | + :param chat_generator: An instance of the chat generator that your agent should use. It must support tools. |
| 58 | + :param tools: List of Tool objects or a Toolset that the agent can use. |
| 59 | + :param memory_store: The memory store to use for the agent. |
| 60 | + :param system_prompt: System prompt for the agent. |
| 61 | + :param exit_conditions: List of conditions that will cause the agent to return. |
| 62 | + Can include "text" if the agent should return when it generates a message without tool calls, |
| 63 | + or tool names that will cause the agent to return once the tool was executed. Defaults to ["text"]. |
| 64 | + :param state_schema: The schema for the runtime state used by the tools. |
| 65 | + :param max_agent_steps: Maximum number of steps the agent will run before stopping. Defaults to 100. |
| 66 | + If the agent exceeds this number of steps, it will stop and return the current state. |
| 67 | + :param streaming_callback: A callback that will be invoked when a response is streamed from the LLM. |
| 68 | + The same callback can be configured to emit tool results when a tool is called. |
| 69 | + :param raise_on_tool_invocation_failure: Should the agent raise an exception when a tool invocation fails? |
| 70 | + If set to False, the exception will be turned into a chat message and passed to the LLM. |
| 71 | + :param tool_invoker_kwargs: Additional keyword arguments to pass to the ToolInvoker. |
| 72 | + :raises TypeError: If the chat_generator does not support tools parameter in its run method. |
| 73 | + :raises ValueError: If the exit_conditions are not valid. |
| 74 | + """ |
| 75 | + super(Agent, self).__init__( |
| 76 | + chat_generator=chat_generator, |
| 77 | + tools=tools, |
| 78 | + system_prompt=system_prompt, |
| 79 | + exit_conditions=exit_conditions, |
| 80 | + state_schema=state_schema, |
| 81 | + max_agent_steps=max_agent_steps, |
| 82 | + streaming_callback=streaming_callback, |
| 83 | + raise_on_tool_invocation_failure=raise_on_tool_invocation_failure, |
| 84 | + tool_invoker_kwargs=tool_invoker_kwargs, |
| 85 | + ) |
| 86 | + self.memory_store = memory_store |
| 87 | + |
| 88 | + def run( # noqa: PLR0915 |
| 89 | + self, |
| 90 | + messages: list[ChatMessage], |
| 91 | + streaming_callback: Optional[StreamingCallbackT] = None, |
| 92 | + *, |
| 93 | + break_point: Optional[AgentBreakpoint] = None, |
| 94 | + snapshot: Optional[AgentSnapshot] = None, |
| 95 | + system_prompt: Optional[str] = None, |
| 96 | + tools: Optional[Union[ToolsType, list[str]]] = None, |
| 97 | + **kwargs: Any, |
| 98 | + ) -> dict[str, Any]: |
| 99 | + """ |
| 100 | + Process messages and execute tools until an exit condition is met. |
| 101 | +
|
| 102 | + :param messages: List of Haystack ChatMessage objects to process. |
| 103 | + :param streaming_callback: A callback that will be invoked when a response is streamed from the LLM. |
| 104 | + The same callback can be configured to emit tool results when a tool is called. |
| 105 | + :param break_point: An AgentBreakpoint, can be a Breakpoint for the "chat_generator" or a ToolBreakpoint |
| 106 | + for "tool_invoker". |
| 107 | + :param snapshot: A dictionary containing a snapshot of a previously saved agent execution. The snapshot contains |
| 108 | + the relevant information to restart the Agent execution from where it left off. |
| 109 | + :param system_prompt: System prompt for the agent. If provided, it overrides the default system prompt. |
| 110 | + :param tools: Optional list of Tool objects, a Toolset, or list of tool names to use for this run. |
| 111 | + When passing tool names, tools are selected from the Agent's originally configured tools. |
| 112 | + :param kwargs: Additional data to pass to the State schema used by the Agent. |
| 113 | + The keys must match the schema defined in the Agent's `state_schema`. |
| 114 | + :returns: |
| 115 | + A dictionary with the following keys: |
| 116 | + - "messages": List of all messages exchanged during the agent's run. |
| 117 | + - "last_message": The last message exchanged during the agent's run. |
| 118 | + - Any additional keys defined in the `state_schema`. |
| 119 | + :raises RuntimeError: If the Agent component wasn't warmed up before calling `run()`. |
| 120 | + :raises BreakpointException: If an agent breakpoint is triggered. |
| 121 | + """ |
| 122 | + |
| 123 | + agent_memory = [] |
| 124 | + |
| 125 | + # Retrieve memories from the memory store |
| 126 | + if self.memory_store: |
| 127 | + agent_memory = self.memory_store.search_memories(query=messages[-1].text) |
| 128 | + |
| 129 | + combined_messages = messages + agent_memory |
| 130 | + |
| 131 | + # We pop parent_snapshot from kwargs to avoid passing it into State. |
| 132 | + parent_snapshot = kwargs.pop("parent_snapshot", None) |
| 133 | + agent_inputs = { |
| 134 | + "messages": combined_messages, |
| 135 | + "streaming_callback": streaming_callback, |
| 136 | + "break_point": break_point, |
| 137 | + "snapshot": snapshot, |
| 138 | + **kwargs, |
| 139 | + } |
| 140 | + self._runtime_checks(break_point=break_point, snapshot=snapshot) |
| 141 | + |
| 142 | + if snapshot: |
| 143 | + exe_context = self._initialize_from_snapshot( |
| 144 | + snapshot=snapshot, |
| 145 | + streaming_callback=streaming_callback, |
| 146 | + requires_async=False, |
| 147 | + tools=tools, |
| 148 | + ) |
| 149 | + else: |
| 150 | + exe_context = self._initialize_fresh_execution( |
| 151 | + messages=combined_messages, |
| 152 | + streaming_callback=streaming_callback, |
| 153 | + requires_async=False, |
| 154 | + system_prompt=system_prompt, |
| 155 | + tools=tools, |
| 156 | + **kwargs, |
| 157 | + ) |
| 158 | + |
| 159 | + with self._create_agent_span() as span: |
| 160 | + span.set_content_tag("haystack.agent.input", _deepcopy_with_exceptions(agent_inputs)) |
| 161 | + |
| 162 | + while exe_context.counter < self.max_agent_steps: |
| 163 | + # Handle breakpoint and ChatGenerator call |
| 164 | + Agent._check_chat_generator_breakpoint( |
| 165 | + execution_context=exe_context, break_point=break_point, parent_snapshot=parent_snapshot |
| 166 | + ) |
| 167 | + # We skip the chat generator when restarting from a snapshot from a ToolBreakpoint |
| 168 | + if exe_context.skip_chat_generator: |
| 169 | + llm_messages = exe_context.state.get("messages", [])[-1:] |
| 170 | + # Set to False so the next iteration will call the chat generator |
| 171 | + exe_context.skip_chat_generator = False |
| 172 | + else: |
| 173 | + try: |
| 174 | + result = Pipeline._run_component( |
| 175 | + component_name="chat_generator", |
| 176 | + component={"instance": self.chat_generator}, |
| 177 | + inputs={ |
| 178 | + "messages": exe_context.state.data["messages"], |
| 179 | + **exe_context.chat_generator_inputs, |
| 180 | + }, |
| 181 | + component_visits=exe_context.component_visits, |
| 182 | + parent_span=span, |
| 183 | + ) |
| 184 | + except PipelineRuntimeError as e: |
| 185 | + pipeline_snapshot = _create_pipeline_snapshot_from_chat_generator( |
| 186 | + agent_name=getattr(self, "__component_name__", None), |
| 187 | + execution_context=exe_context, |
| 188 | + parent_snapshot=parent_snapshot, |
| 189 | + ) |
| 190 | + e.pipeline_snapshot = pipeline_snapshot |
| 191 | + raise e |
| 192 | + |
| 193 | + llm_messages = result["replies"] |
| 194 | + exe_context.state.set("messages", llm_messages) |
| 195 | + |
| 196 | + # Check if any of the LLM responses contain a tool call or if the LLM is not using tools |
| 197 | + if not any(msg.tool_call for msg in llm_messages) or self._tool_invoker is None: |
| 198 | + exe_context.counter += 1 |
| 199 | + break |
| 200 | + |
| 201 | + # Handle breakpoint and ToolInvoker call |
| 202 | + Agent._check_tool_invoker_breakpoint( |
| 203 | + execution_context=exe_context, break_point=break_point, parent_snapshot=parent_snapshot |
| 204 | + ) |
| 205 | + try: |
| 206 | + # We only send the messages from the LLM to the tool invoker |
| 207 | + tool_invoker_result = Pipeline._run_component( |
| 208 | + component_name="tool_invoker", |
| 209 | + component={"instance": self._tool_invoker}, |
| 210 | + inputs={ |
| 211 | + "messages": llm_messages, |
| 212 | + "state": exe_context.state, |
| 213 | + **exe_context.tool_invoker_inputs, |
| 214 | + }, |
| 215 | + component_visits=exe_context.component_visits, |
| 216 | + parent_span=span, |
| 217 | + ) |
| 218 | + except PipelineRuntimeError as e: |
| 219 | + # Access the original Tool Invoker exception |
| 220 | + original_error = e.__cause__ |
| 221 | + tool_name = getattr(original_error, "tool_name", None) |
| 222 | + |
| 223 | + pipeline_snapshot = _create_pipeline_snapshot_from_tool_invoker( |
| 224 | + tool_name=tool_name, |
| 225 | + agent_name=getattr(self, "__component_name__", None), |
| 226 | + execution_context=exe_context, |
| 227 | + parent_snapshot=parent_snapshot, |
| 228 | + ) |
| 229 | + e.pipeline_snapshot = pipeline_snapshot |
| 230 | + raise e |
| 231 | + |
| 232 | + tool_messages = tool_invoker_result["tool_messages"] |
| 233 | + exe_context.state = tool_invoker_result["state"] |
| 234 | + exe_context.state.set("messages", tool_messages) |
| 235 | + |
| 236 | + # Check if any LLM message's tool call name matches an exit condition |
| 237 | + if self.exit_conditions != ["text"] and self._check_exit_conditions(llm_messages, tool_messages): |
| 238 | + exe_context.counter += 1 |
| 239 | + break |
| 240 | + |
| 241 | + # Increment the step counter |
| 242 | + exe_context.counter += 1 |
| 243 | + |
| 244 | + if exe_context.counter >= self.max_agent_steps: |
| 245 | + logger.warning( |
| 246 | + "Agent reached maximum agent steps of {max_agent_steps}, stopping.", |
| 247 | + max_agent_steps=self.max_agent_steps, |
| 248 | + ) |
| 249 | + span.set_content_tag("haystack.agent.output", exe_context.state.data) |
| 250 | + span.set_tag("haystack.agent.steps_taken", exe_context.counter) |
| 251 | + |
| 252 | + result = {**exe_context.state.data} |
| 253 | + if msgs := result.get("messages"): |
| 254 | + result["last_message"] = msgs[-1] |
| 255 | + |
| 256 | + # Add the new conversation as memories to the memory store |
| 257 | + self.memory_store.add_memories(result["messages"]) |
| 258 | + return result |
0 commit comments