|
| 1 | +skip_on_cran() |
| 2 | + |
| 3 | +skip_if_not_installed("MuMIn") |
| 4 | +skip_if_not_installed("withr") |
| 5 | +skip_if_not_installed("glmmTMB") |
| 6 | +skip_if_not_installed("betareg") |
| 7 | + |
| 8 | +withr::with_options( |
| 9 | + list(na.action = "na.fail"), |
| 10 | + test_that("MuMIn link functions", { |
| 11 | + library(MuMIn) # nolint |
| 12 | + set.seed(1234) |
| 13 | + dat <- data.frame( |
| 14 | + outcome = rbinom(n = 100, size = 1, prob = 0.35), |
| 15 | + var_binom = as.factor(rbinom(n = 100, size = 1, prob = 0.2)), |
| 16 | + var_cont = rnorm(n = 100, mean = 10, sd = 7), |
| 17 | + group = sample(letters[1:4], size = 100, replace = TRUE), |
| 18 | + stringsAsFactors = FALSE |
| 19 | + ) |
| 20 | + dat$var_cont <- as.vector(scale(dat$var_cont)) |
| 21 | + m1 <- glm( |
| 22 | + outcome ~ var_binom + var_cont, |
| 23 | + data = dat, |
| 24 | + family = binomial(link = "logit") |
| 25 | + ) |
| 26 | + out <- MuMIn::model.avg(MuMIn::dredge(m1), fit = TRUE) |
| 27 | + mp <- model_parameters(out) |
| 28 | + expect_snapshot(print(mp)) |
| 29 | + }) |
| 30 | +) |
| 31 | + |
| 32 | +test_that("ggpredict, glmmTMB averaging", { |
| 33 | + library(MuMIn) # nolint |
| 34 | + data(FoodExpenditure, package = "betareg") |
| 35 | + m <- glmmTMB::glmmTMB( |
| 36 | + I(food / income) ~ income + (1 | persons), |
| 37 | + ziformula = ~1, |
| 38 | + data = FoodExpenditure, |
| 39 | + na.action = "na.fail", |
| 40 | + family = glmmTMB::beta_family() |
| 41 | + ) |
| 42 | + set.seed(123) |
| 43 | + dr <- MuMIn::dredge(m) |
| 44 | + avg <- MuMIn::model.avg(object = dr, fit = TRUE) |
| 45 | + mp <- model_parameters(avg) |
| 46 | + expect_snapshot(print(mp)) |
| 47 | +}) |
| 48 | + |
| 49 | + |
| 50 | +withr::with_options( |
| 51 | + list(na.action = "na.fail"), |
| 52 | + test_that("ggpredict, poly averaging", { |
| 53 | + library(MuMIn) |
| 54 | + data(mtcars) |
| 55 | + mtcars$am <- factor(mtcars$am) |
| 56 | + |
| 57 | + set.seed(123) |
| 58 | + m <- lm(disp ~ mpg + I(mpg^2) + am + gear, mtcars) |
| 59 | + dr <- MuMIn::dredge(m, subset = dc(mpg, I(mpg^2))) |
| 60 | + dr <- subset(dr, !(has(mpg) & !has(I(mpg^2)))) |
| 61 | + mod.avg.i <- MuMIn::model.avg(dr, fit = TRUE) |
| 62 | + mp <- model_parameters(mod.avg.i) |
| 63 | + expect_snapshot(print(mp)) |
| 64 | + }) |
| 65 | +) |
| 66 | + |
| 67 | +unloadNamespace("MuMIn") |
0 commit comments