Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions tools/server/server.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1690,6 +1690,9 @@ struct server_slot {
bool res = prompt_cache.load(prompt, tokens, ctx, id);
if (!res) {
SLT_WRN(*this, "%s", "failed to load prompt from cache\n");

llama_memory_seq_rm(llama_get_memory(ctx), id, -1, -1);
prompt.tokens.clear();
}
}

Expand Down
42 changes: 42 additions & 0 deletions tools/server/tests/unit/test_completion.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
import pytest
import requests
import time
import random

from openai import OpenAI
from utils import *

Expand Down Expand Up @@ -564,3 +566,43 @@ def test_cancel_request():
time.sleep(1) # wait for HTTP_POLLING_SECONDS
res = server.make_request("GET", "/slots")
assert res.body[0]["is_processing"] == False


# this test exercises the host-memory prompt cache
# ref: https://github.com/ggml-org/llama.cpp/pull/16391
# ref: https://github.com/ggml-org/llama.cpp/pull/17078
def test_completion_prompt_cache():
global server
server.n_slots = 2
server.kv_unified = True
server.start()

for _ in range(16):
# generate alternating random prompts with variable lengths in order to get them in and out of the cache
r = random.randint(0, 4)
prompt = (" Hello " + str(r)) * (40 + r)
n_prompt = (40 + r)*5 + 2
n_predict = random.randint(1, 8)

res = server.make_request(
"POST",
"/completion",
data={
"prompt": prompt,
"n_predict": n_predict,
},
)

assert res.status_code == 200
assert "content" in res.body
content = res.body["content"]
assert isinstance(content, str)
assert len(content) > 0

assert type(res.body["has_new_line"]) == bool
assert "timings" in res.body
timings = res.body["timings"]

assert "prompt_n" in timings and timings["prompt_n"] + timings["cache_n"] == n_prompt
assert "predicted_n" in timings and timings["predicted_n"] == n_predict
assert "tokens" in res.body and isinstance(res.body["tokens"], list)
Loading