diff --git a/docs/pytorch_converter/README.md b/docs/pytorch_converter/README.md index 513e4e81..8111ad3b 100644 --- a/docs/pytorch_converter/README.md +++ b/docs/pytorch_converter/README.md @@ -120,13 +120,11 @@ edge_model(*inputs_2, signature_name="input2") ## Quantization Following is the code snippet to quantize a model with [PT2E -quantization](https://pytorch.org/tutorials/prototype/quantization_in_pytorch_2_0_export_tutorial.html) +quantization](https://docs.pytorch.org/ao/stable/tutorials_source/pt2e_quant_ptq.html) using the `ai_edge_torch` backend. ```python from torch.ao.quantization.quantize_pt2e import prepare_pt2e, convert_pt2e -from torch._export import capture_pre_autograd_graph - from ai_edge_torch.quantize.pt2e_quantizer import get_symmetric_quantization_config from ai_edge_torch.quantize.pt2e_quantizer import PT2EQuantizer from ai_edge_torch.quantize.quant_config import QuantConfig @@ -135,7 +133,12 @@ pt2e_quantizer = PT2EQuantizer().set_global( get_symmetric_quantization_config(is_per_channel=True, is_dynamic=True) ) -pt2e_torch_model = capture_pre_autograd_graph(torch_model, sample_args) +# > For pytorch 2.6+ +pt2e_torch_model = torch.export.export(torch_model, sample_args).module() +# > For pytorch 2.5 and before +# from torch._export import capture_pre_autograd_graph +# pt2e_torch_model = capture_pre_autograd_graph(torch_model, sample_args) + pt2e_torch_model = prepare_pt2e(pt2e_torch_model, pt2e_quantizer) # Run the prepared model with sample input data to ensure that internal observers are populated with correct values