Skip to content

Gemma3ForConditionalGeneration is not torch.compile compatible #42440

@jood-canva

Description

@jood-canva

System Info

  • transformers version: 4.57.1
  • Platform: Linux-6.8.0-1043-aws-x86_64-with-glibc2.35
  • Python version: 3.11.10
  • Huggingface_hub version: 0.34.3
  • Safetensors version: 0.4.3
  • Accelerate version: 1.10.1
  • Accelerate config: not found
  • DeepSpeed version: not installed
  • PyTorch version (accelerator?): 2.7.1+cu126 (CUDA)
  • Tensorflow version (GPU?): not installed (NA)
  • Flax version (CPU?/GPU?/TPU?): not installed (NA)
  • Jax version: not installed
  • JaxLib version: not installed
  • Using distributed or parallel set-up in script?:
  • Using GPU in script?:
  • GPU type: NVIDIA L40S

Who can help?

Hi @zucchini-nlp

Is Gemma3ForConditionalGeneration expected to work with torch compile? I am trying to speed up inference following this page and I'm getting errors. Here is the script I'm using

Not sure if there's anything that I'm doing obviously wrong. Thanks!

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • An officially supported task in the examples folder (such as GLUE/SQuAD, ...)
  • My own task or dataset (give details below)

Reproduction

Running this python script:

from transformers import AutoProcessor, Gemma3ForConditionalGeneration
import torch
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"  # To prevent long warnings :)

model = Gemma3ForConditionalGeneration.from_pretrained("google/gemma-3-4b-it", dtype=torch.bfloat16, device_map="auto")

model.generation_config.cache_implementation = "static"
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)


processor = AutoProcessor.from_pretrained(
    "google/gemma-3-4b-it",
    padding_side="left"
)

messages = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are a helpful assistant."}
        ]
    },
    {
        "role": "user", "content": [
            {"type": "text", "text": "What is shown in this image?"},
        ]
    },
]
inputs = processor.apply_chat_template(
    messages,
    tokenize=True,
    return_dict=True,
    return_tensors="pt",
    add_generation_prompt=True,
).to(model.device)

outputs = model.generate(**inputs, max_new_tokens=100, cache_implementation="static")
print(processor.tokenizer.batch_decode(outputs, skip_special_tokens=True))

and I'm getting the following error

skipping cudagraphs due to mutated inputs (68 instances). Found from :
   File "/home/coder/work/canva/tools/build/python/third_party/.venv/lib/python3.11/site-packages/transformers/models/gemma3/modeling_gemma3.py", line 1100, in forward
    outputs = self.model(
  File "/home/coder/work/canva/tools/build/python/third_party/.venv/lib/python3.11/site-packages/transformers/utils/generic.py", line 918, in wrapper
    output = func(self, *args, **kwargs)
  File "/home/coder/work/canva/tools/build/python/third_party/.venv/lib/python3.11/site-packages/transformers/models/gemma3/modeling_gemma3.py", line 957, in forward
    outputs = self.language_model(
  File "/home/coder/work/canva/tools/build/python/third_party/.venv/lib/python3.11/site-packages/transformers/utils/generic.py", line 1064, in wrapper
    outputs = func(self, *args, **kwargs)
  File "/home/coder/work/canva/tools/build/python/third_party/.venv/lib/python3.11/site-packages/transformers/models/gemma3/modeling_gemma3.py", line 570, in forward
    layer_outputs = decoder_layer(
  File "/home/coder/work/canva/tools/build/python/third_party/.venv/lib/python3.11/site-packages/transformers/modeling_layers.py", line 94, in __call__
    return super().__call__(*args, **kwargs)
  File "/home/coder/work/canva/tools/build/python/third_party/.venv/lib/python3.11/site-packages/transformers/utils/deprecation.py", line 172, in wrapped_func
    return func(*args, **kwargs)
  File "/home/coder/work/canva/tools/build/python/third_party/.venv/lib/python3.11/site-packages/transformers/models/gemma3/modeling_gemma3.py", line 382, in forward
    hidden_states, self_attn_weights = self.self_attn(
  File "/home/coder/work/canva/tools/build/python/third_party/.venv/lib/python3.11/site-packages/transformers/utils/deprecation.py", line 172, in wrapped_func
    return func(*args, **kwargs)
  File "/home/coder/work/canva/tools/build/python/third_party/.venv/lib/python3.11/site-packages/transformers/models/gemma3/modeling_gemma3.py", line 321, in forward
    key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
  File "/home/coder/work/canva/tools/build/python/third_party/.venv/lib/python3.11/site-packages/transformers/cache_utils.py", line 776, in update
    keys, values = self.layers[layer_idx].update(key_states, value_states, cache_kwargs)
  File "/home/coder/work/canva/tools/build/python/third_party/.venv/lib/python3.11/site-packages/transformers/cache_utils.py", line 443, in update
    self.keys.index_copy_(2, cache_position, key_states)

[1]    359729 segmentation fault (core dumped)  ipython

Expected behavior

I thought it would work without error

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions