|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "93eda882-3c30-46cf-a33c-0a6f29ca18b4", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Hyperparameter Optimization with Optuna in cellmaps_vnn\n", |
| 9 | + "\n", |
| 10 | + "This tutorial shows how to define a training configuration with search spaces for Optuna, run training using the config file, and then use the resulting optimized parameters for prediction." |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "markdown", |
| 15 | + "id": "e4eb7598-d496-4864-ad70-44596bbfcfc8", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "### Step 1: Define Your Configuration \n", |
| 19 | + "Below we define a configuration dictionary for training.\n", |
| 20 | + "\n", |
| 21 | + "If a parameter is given a list of values, Optuna will treat it as a search space. If it is a single value, it will remain fixed during training." |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": null, |
| 27 | + "id": "3fe289d2-2a8b-46e3-a48a-e3d7021736dc", |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [], |
| 30 | + "source": [ |
| 31 | + "# Define or modify your hyperparameter configuration here\n", |
| 32 | + "config = {\n", |
| 33 | + " # Training settings\n", |
| 34 | + " 'epoch': 20,\n", |
| 35 | + " 'cuda': 0,\n", |
| 36 | + " 'zscore_method': 'auc',\n", |
| 37 | + "\n", |
| 38 | + " # Optimization settings\n", |
| 39 | + " 'optimize': 1, # Set to 1 to enable Optuna optimization\n", |
| 40 | + " 'n_trials': 2, # Number of trials for Optuna\n", |
| 41 | + "\n", |
| 42 | + " # Parameters (if parameter is given a list of values, it will be considered for optimization)\n", |
| 43 | + " 'batchsize': [32, 64, 128],\n", |
| 44 | + " 'lr': [0.1, 0.01, 0.001],\n", |
| 45 | + " 'wd': [0.0001, 0.001, 0.01],\n", |
| 46 | + " 'alpha': 0.3,\n", |
| 47 | + " 'genotype_hiddens': 4,\n", |
| 48 | + " 'patience': 30,\n", |
| 49 | + " 'delta': [0.001, 0.002, 0.003],\n", |
| 50 | + " 'min_dropout_layer': 2,\n", |
| 51 | + " 'dropout_fraction': 0.3,\n", |
| 52 | + "\n", |
| 53 | + " # Input files\n", |
| 54 | + " 'training_data': '../examples/training_data.txt',\n", |
| 55 | + " 'predict_data': '../examples/test_data.txt',\n", |
| 56 | + " 'gene2id': '../examples/gene2ind.txt',\n", |
| 57 | + " 'cell2id': '../examples/cell2ind.txt',\n", |
| 58 | + " 'mutations': '../examples/cell2mutation.txt',\n", |
| 59 | + " 'cn_deletions': '../examples/cell2cndeletion.txt',\n", |
| 60 | + " 'cn_amplifications': '../examples/cell2cnamplification.txt'\n", |
| 61 | + "}" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "markdown", |
| 66 | + "id": "38754843-3c40-4f08-a081-3fa022ada41f", |
| 67 | + "metadata": {}, |
| 68 | + "source": [ |
| 69 | + "### Step 2: Save Configuration to YAML\n", |
| 70 | + "We'll save the configuration to a YAML file. The training pipeline will load this file and extract parameter values and ranges." |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": null, |
| 76 | + "id": "6ad5102e-441c-4bc3-a95f-793c9580511c", |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "import yaml\n", |
| 81 | + "\n", |
| 82 | + "# Save to a YAML config file\n", |
| 83 | + "config_path = './vnn_config.yaml'\n", |
| 84 | + "\n", |
| 85 | + "with open(config_path, 'w') as f:\n", |
| 86 | + " yaml.dump(config, f, default_flow_style=False, sort_keys=False)\n", |
| 87 | + "\n", |
| 88 | + "print(f'Configuration saved to {config_path}')" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "markdown", |
| 93 | + "id": "f00ed72c-33dc-42c8-82b6-df115eefa715", |
| 94 | + "metadata": {}, |
| 95 | + "source": [ |
| 96 | + "### Step 3: Train the VNN Model with Optuna\n", |
| 97 | + "Use **cellmaps_vnncmd.py train** and provide the config file via **--config_file**.\n", |
| 98 | + "This will automatically trigger Optuna-based optimization for any parameter listed with multiple values.\n", |
| 99 | + "\n", |
| 100 | + "After training completes, the output folder (out_train_optuna) will contain a config.yaml file — a flattened version of the original config with the best parameters from Optuna." |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "code", |
| 105 | + "execution_count": null, |
| 106 | + "id": "28c0456c-96b8-44b3-aa3e-6561d7d92788", |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [], |
| 109 | + "source": [ |
| 110 | + "import subprocess\n", |
| 111 | + "\n", |
| 112 | + "train_out = 'out_train_optuna'\n", |
| 113 | + "inputdir = '../examples/'\n", |
| 114 | + "command = (\n", |
| 115 | + " f\"cellmaps_vnncmd.py train {train_out} --inputdir {inputdir} --config_file {config_path}\"\n", |
| 116 | + ")\n", |
| 117 | + "subprocess.run(command, shell=True, check=True)" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "markdown", |
| 122 | + "id": "6f65a487-7fd0-45ca-bd32-f1b6b90466fc", |
| 123 | + "metadata": {}, |
| 124 | + "source": [ |
| 125 | + "### Step 2: Make predictions with the Optimized Model\n", |
| 126 | + "Use the saved config.yaml from training (with best parameters) to perform prediction." |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "code", |
| 131 | + "execution_count": null, |
| 132 | + "id": "058378cd-8ae9-433b-a19b-917c3ce18993", |
| 133 | + "metadata": {}, |
| 134 | + "outputs": [], |
| 135 | + "source": [ |
| 136 | + "test_out = './out_test'\n", |
| 137 | + "new_config = f\"{train_out}/config.yaml\"\n", |
| 138 | + "\n", |
| 139 | + "\n", |
| 140 | + "command = (\n", |
| 141 | + " f\"cellmaps_vnncmd.py predict {test_out} --inputdir {train_out} \"\n", |
| 142 | + " f\"--config_file {new_config}\"\n", |
| 143 | + ")\n", |
| 144 | + "subprocess.run(command, shell=True, check=True)" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": null, |
| 150 | + "id": "1fdcac84-fbd2-4446-9a8c-df247e182a87", |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [], |
| 153 | + "source": [] |
| 154 | + } |
| 155 | + ], |
| 156 | + "metadata": { |
| 157 | + "kernelspec": { |
| 158 | + "display_name": "Python 3 (ipykernel)", |
| 159 | + "language": "python", |
| 160 | + "name": "python3" |
| 161 | + }, |
| 162 | + "language_info": { |
| 163 | + "codemirror_mode": { |
| 164 | + "name": "ipython", |
| 165 | + "version": 3 |
| 166 | + }, |
| 167 | + "file_extension": ".py", |
| 168 | + "mimetype": "text/x-python", |
| 169 | + "name": "python", |
| 170 | + "nbconvert_exporter": "python", |
| 171 | + "pygments_lexer": "ipython3", |
| 172 | + "version": "3.8.18" |
| 173 | + } |
| 174 | + }, |
| 175 | + "nbformat": 4, |
| 176 | + "nbformat_minor": 5 |
| 177 | +} |
0 commit comments