Skip to content

Commit 38653e7

Browse files
committed
add pip wheel TF 2.1.0 for Python 3.8 and CUDA 10.2
1 parent dac508a commit 38653e7

File tree

1 file changed

+15
-6
lines changed

1 file changed

+15
-6
lines changed

README.md

Lines changed: 15 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -11,14 +11,17 @@ The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are
1111

1212
## Introduction
1313

14-
The builds enable CPU optimizations such as `SSE4`, `AVX2`, and `FMA`. If you have a CPU released after ~2013 then you'll benefit from them. Note that you will benefit from these even if you do all your training on GPU due to i/o pipeline optimizations. I think I've gained about 10-15% performance boost even on most straightforward supervised learning tasks. And of course in CPU only setting they give significant improvement, sometimes matching GPU speeds on smaller neural networks (especially true for laptops where even in higher end models GPUs tend to lag behind).
14+
The builds enable various performance flags targeting modern CPUs, including SIMD support (AVX2, SSE4, FMA).
15+
If you have a CPU released after ~2013 then you'll likely benefit from these on e.g. data pre-processing.
1516

16-
Additionally, build enables [XLA](https://www.tensorflow.org/xla/) - an Accelerated Linear Algebra domain-specific just-in-time compiler, and [MPI](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/mpi) - a faster way to run distributed TensorFlow than what is offered built-in.
17+
Build also enables [XLA](https://www.tensorflow.org/xla/) - an Accelerated Linear Algebra domain-specific just-in-time compiler.
18+
19+
Finally, additional compute capabilities support (5.0, 6.1, 7.0) is enabled, which means these wheels should also work on older GPUs (7xx - 9xx families).
1720

1821
## Available Wheels
1922
|TensorFlow|Python|CUDA|CuDNN|TensorRT|NCCL|Compute Capability|OS|Link|
2023
|---:|---:|---:|---:|---:|---:|---:|:---:|:---:|
21-
|2.1.0rc2|3.8|10.2|7.6|N/A|2.5|5.0,6.1,7.0|Linux|[tensorflow-2.1.0rc2-cp38-cp38-linux_x86_64.whl](https://github.com/inoryy/tensorflow-optimized-wheels/releases/download/v2.1.0rc2/tensorflow-2.1.0rc2-cp38-cp38-linux_x86_64.whl)|
24+
|2.1.0|3.8|10.2|7.6|N/A|2.5|5.0,6.1,7.0|Linux|[tensorflow-2.1.0-cp38-cp38-linux_x86_64.whl](https://github.com/inoryy/tensorflow-optimized-wheels/releases/download/v2.1.0/tensorflow-2.1.0-cp38-cp38-linux_x86_64.whl)|
2225
|2.0.0|3.8|10.2|7.6|N/A|2.5|5.0,6.1,7.0|Linux|[tensorflow-2.0.0-cp38-cp38-linux_x86_64.whl](https://github.com/inoryy/tensorflow-optimized-wheels/releases/download/v2.0.0-py3.8/tensorflow-2.0.0-cp38-cp38-linux_x86_64.whl)|
2326
|2.0.0|3.7|10.1|7.5|N/A|2.4|5.0,6.1,7.0|Linux|[tensorflow-2.0.0-cp37-cp37m-linux_x86_64.whl](https://github.com/inoryy/tensorflow-optimized-wheels/releases/download/v2.0.0/tensorflow-2.0.0-cp37-cp37m-linux_x86_64.whl)|
2427
|1.13.1|3.7|10.0|7.5|5.0|2.4|5.0,6.1,7.0|Linux|[tensorflow-1.13.1-cp37-cp37m-linux_x86_64.whl](https://github.com/inoryy/tensorflow-optimized-wheels/releases/download/v1.13.1-py37/tensorflow-1.13.1-cp37-cp37m-linux_x86_64.whl)|
@@ -38,15 +41,21 @@ pip install https://github.com/inoryy/tensorflow-optimized-wheels/releases/downl
3841
And verify the installation (notice no warning messages):
3942

4043
```
44+
$ python
45+
Python 3.8.0 | packaged by conda-forge | (default, Nov 22 2019, 19:11:38)
46+
[GCC 7.3.0] :: Anaconda, Inc. on linux
4147
>>> import tensorflow as tf
48+
I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.2
4249
>>> tf.__version__
43-
'2.0.0'
50+
'2.1.0'
4451
>>> tf.executing_eagerly()
4552
True
4653
>>> tf.constant([123]) + tf.constant([321])
47-
2019-12-30 17:47:56.055840: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
54+
I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
4855
...
49-
<tf.Tensor: id=2, shape=(1,), dtype=int32, numpy=array([444], dtype=int32)>
56+
I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
57+
I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241] Created TensorFlow device (...) -> physical GPU (...)
58+
<tf.Tensor: shape=(1,), dtype=int32, numpy=array([444], dtype=int32)>
5059
```
5160

5261
## Requests

0 commit comments

Comments
 (0)