Skip to content

v090 only linux at all #1038

@kalle07

Description

@kalle07

run the same script like before with v080

now v090
(usual: pip install libary)

2025-11-15 09:02:01 WARNING init.py L22: AutoScheme is currently supported only on Linux.
2025-11-15 09:02:05 WARNING init.py L22: AutoScheme is currently supported only on Linux.
Traceback (most recent call last):
File "", line 198, in run_module_as_main
File "", line 88, in run_code
File "c:\Users\xxx\Documents\python\autoround\venv\Scripts\auto_round_mllm.exe_main
.py", line 2, in
ImportError: cannot import name 'run_mllm' from 'auto_round.main' (C:\Users\xxx\Documents\python\autoround\venv\Lib\site-packages\auto_round_main
.py)

Prozess beendet mit Code: 1

auto_round.exe seems to work ...

it ss possible to show me partameter for q2ks ~14-32B models -> for my system 16GBVram + 64 RAM
oc i can wait 2hours, possible to get more output while calculating ...
THX

for Q2 set enable_alg_ext=True right?

# --- Importiere benötigte Module ---
from transformers import AutoModelForCausalLM, AutoTokenizer
from auto_round import AutoRound
#from auto_round_mllm import Autoround
from pathlib import Path
import torch

# --- Basisverzeichnis: Speicherort des Skripts ---
script_dir = Path(__file__).parent

# --- Modellverzeichnis definieren (absoluter Pfad) ---
model_dir = script_dir / "e:/NextCoder-7B/safetensors"

# --- Überprüfen, ob das Verzeichnis existiert ---
if not model_dir.exists():
    print(f"❌ Der Pfad '{model_dir}' existiert nicht.")
elif not model_dir.is_dir():
    print(f"⚠️ Der Pfad '{model_dir}' ist keine Verzeichnisstruktur.")
else:
    print(f"📁 Inhalte des Verzeichnisses: {model_dir}\n")
    files = [f for f in model_dir.iterdir() if f.is_file()]
    if not files:
        print("ℹ️ Keine Dateien im Verzeichnis gefunden.")
    else:
        for file in files:
            print(f" - {file.name}")
# --- Modell laden ---
model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(model_dir)
# --- AutoRound initialisieren ---
bits, group_size, sym = 2, 16, False

autoround = AutoRound(model, tokenizer, bits=bits, group_size=group_size, sym=sym, batch_size=4, nsamples=512, iters=0, low_gpu_mem_usage=False, disable_opt_rtn=True, enable_alg_ext=True)

# --- Output-Verzeichnis: im selben Ordner wie das Skript ---
output_dir = script_dir / "tmp_auto_next"


# Supported formats: "auto_round" (default), "auto_gptq", "auto_awq", "llm_compressor", "gguf:q4_k_m", "gguf:q2_k_s" etc.
# --- Quantisieren und speichern ---
autoround.quantize_and_save(output_dir, format='gguf:q2_k_s')

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions