You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+9-9Lines changed: 9 additions & 9 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -109,17 +109,17 @@ By ensuring that the content aligns with projects, the process is made more enga
109
109
| 02 | The History of machine learning |[Introduction](1-Introduction/README.md)| Learn the history underlying this field |[Lesson](1-Introduction/2-history-of-ML/README.md)| Jen and Amy |
110
110
| 03 | Fairness and machine learning |[Introduction](1-Introduction/README.md)| What are the important philosophical issues around fairness that students should consider when building and applying ML models? |[Lesson](1-Introduction/3-fairness/README.md)| Tomomi |
111
111
| 04 | Techniques for machine learning |[Introduction](1-Introduction/README.md)| What techniques do ML researchers use to build ML models? |[Lesson](1-Introduction/4-techniques-of-ML/README.md)| Chris and Jen |
112
-
| 05 | Introduction to regression |[Regression](2-Regression/README.md)| Get started with Python and Scikit-learn for regression models |<ul><li>[Python](2-Regression/1-Tools/README.md)</li><li>[R](2-Regression/1-Tools/solution/R/lesson_1.html)</li></ul>|<ul><li>Jen</li><li>Eric Wanjau</li></ul>|
113
-
| 06 | North American pumpkin prices 🎃 |[Regression](2-Regression/README.md)| Visualize and clean data in preparation for ML |<ul><li>[Python](2-Regression/2-Data/README.md)</li><li>[R](2-Regression/2-Data/solution/R/lesson_2.html)</li></ul>|<ul><li>Jen</li><li>Eric Wanjau</li></ul>|
114
-
| 07 | North American pumpkin prices 🎃 |[Regression](2-Regression/README.md)| Build linear and polynomial regression models |<ul><li>[Python](2-Regression/3-Linear/README.md)</li><li>[R](2-Regression/3-Linear/solution/R/lesson_3.html)</li></ul>|<ul><li>Jen and Dmitry</li><li>Eric Wanjau</li></ul>|
115
-
| 08 | North American pumpkin prices 🎃 |[Regression](2-Regression/README.md)| Build a logistic regression model |<ul><li>[Python](2-Regression/4-Logistic/README.md)</li><li>[R](2-Regression/4-Logistic/solution/R/lesson_4.html)</li></ul>|<ul><li>Jen</li><li>Eric Wanjau</li></ul>|
112
+
| 05 | Introduction to regression |[Regression](2-Regression/README.md)| Get started with Python and Scikit-learn for regression models |[Python](2-Regression/1-Tools/README.md) • [R](2-Regression/1-Tools/solution/R/lesson_1.html)| Jen • Eric Wanjau |
113
+
| 06 | North American pumpkin prices 🎃 |[Regression](2-Regression/README.md)| Visualize and clean data in preparation for ML |[Python](2-Regression/2-Data/README.md) • [R](2-Regression/2-Data/solution/R/lesson_2.html)| Jen • Eric Wanjau |
114
+
| 07 | North American pumpkin prices 🎃 |[Regression](2-Regression/README.md)| Build linear and polynomial regression models |[Python](2-Regression/3-Linear/README.md) • [R](2-Regression/3-Linear/solution/R/lesson_3.html)| Jen and Dmitry • Eric Wanjau |
115
+
| 08 | North American pumpkin prices 🎃 |[Regression](2-Regression/README.md)| Build a logistic regression model |[Python](2-Regression/4-Logistic/README.md)• [R](2-Regression/4-Logistic/solution/R/lesson_4.html)| Jen • Eric Wanjau |
116
116
| 09 | A Web App 🔌 |[Web App](3-Web-App/README.md)| Build a web app to use your trained model |[Python](3-Web-App/1-Web-App/README.md)| Jen |
117
-
| 10 | Introduction to classification |[Classification](4-Classification/README.md)| Clean, prep, and visualize your data; introduction to classification |<ul><li> [Python](4-Classification/1-Introduction/README.md)</li><li>[R](4-Classification/1-Introduction/solution/R/lesson_10.html)|<ul><li>Jen and Cassie</li><li>Eric Wanjau</li></ul>|
118
-
| 11 | Delicious Asian and Indian cuisines 🍜 |[Classification](4-Classification/README.md)| Introduction to classifiers |<ul><li> [Python](4-Classification/2-Classifiers-1/README.md)</li><li>[R](4-Classification/2-Classifiers-1/solution/R/lesson_11.html)|<ul><li>Jen and Cassie</li><li>Eric Wanjau</li></ul>|
119
-
| 12 | Delicious Asian and Indian cuisines 🍜 |[Classification](4-Classification/README.md)| More classifiers |<ul><li> [Python](4-Classification/3-Classifiers-2/README.md)</li><li>[R](4-Classification/3-Classifiers-2/solution/R/lesson_12.html)|<ul><li>Jen and Cassie</li><li>Eric Wanjau</li></ul>|
117
+
| 10 | Introduction to classification |[Classification](4-Classification/README.md)| Clean, prep, and visualize your data; introduction to classification |[Python](4-Classification/1-Introduction/README.md)• [R](4-Classification/1-Introduction/solution/R/lesson_10.html)| Jen and Cassie • Eric Wanjau |
118
+
| 11 | Delicious Asian and Indian cuisines 🍜 |[Classification](4-Classification/README.md)| Introduction to classifiers |[Python](4-Classification/2-Classifiers-1/README.md) • [R](4-Classification/2-Classifiers-1/solution/R/lesson_11.html)| Jen and Cassie • Eric Wanjau |
119
+
| 12 | Delicious Asian and Indian cuisines 🍜 |[Classification](4-Classification/README.md)| More classifiers |[Python](4-Classification/3-Classifiers-2/README.md) • [R](4-Classification/3-Classifiers-2/solution/R/lesson_12.html)| Jen and Cassie • Eric Wanjau |
120
120
| 13 | Delicious Asian and Indian cuisines 🍜 |[Classification](4-Classification/README.md)| Build a recommender web app using your model |[Python](4-Classification/4-Applied/README.md)| Jen |
121
-
| 14 | Introduction to clustering |[Clustering](5-Clustering/README.md)| Clean, prep, and visualize your data; Introduction to clustering |<ul><li> [Python](5-Clustering/1-Visualize/README.md)</li><li>[R](5-Clustering/1-Visualize/solution/R/lesson_14.html)|<ul><li>Jen</li><li>Eric Wanjau</li></ul>|
| 14 | Introduction to clustering |[Clustering](5-Clustering/README.md)| Clean, prep, and visualize your data; Introduction to clustering |[Python](5-Clustering/1-Visualize/README.md) • [R](5-Clustering/1-Visualize/solution/R/lesson_14.html)| Jen • Eric Wanjau |
122
+
| 15 | Exploring Nigerian Musical Tastes 🎧 |[Clustering](5-Clustering/README.md)| Explore the K-Means clustering method |[Python](5-Clustering/2-K-Means/README.md) • [R](5-Clustering/2-K-Means/solution/R/lesson_15.html)| Jen • Eric Wanjau |
123
123
| 16 | Introduction to natural language processing ☕️ |[Natural language processing](6-NLP/README.md)| Learn the basics about NLP by building a simple bot |[Python](6-NLP/1-Introduction-to-NLP/README.md)| Stephen |
124
124
| 17 | Common NLP Tasks ☕️ |[Natural language processing](6-NLP/README.md)| Deepen your NLP knowledge by understanding common tasks required when dealing with language structures |[Python](6-NLP/2-Tasks/README.md)| Stephen |
125
125
| 18 | Translation and sentiment analysis ♥️ |[Natural language processing](6-NLP/README.md)| Translation and sentiment analysis with Jane Austen |[Python](6-NLP/3-Translation-Sentiment/README.md)| Stephen |
0 commit comments