Skip to content

Commit b25eed0

Browse files
committed
fix formatting
1 parent ca2e483 commit b25eed0

File tree

1 file changed

+9
-9
lines changed

1 file changed

+9
-9
lines changed

README.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -109,17 +109,17 @@ By ensuring that the content aligns with projects, the process is made more enga
109109
| 02 | The History of machine learning | [Introduction](1-Introduction/README.md) | Learn the history underlying this field | [Lesson](1-Introduction/2-history-of-ML/README.md) | Jen and Amy |
110110
| 03 | Fairness and machine learning | [Introduction](1-Introduction/README.md) | What are the important philosophical issues around fairness that students should consider when building and applying ML models? | [Lesson](1-Introduction/3-fairness/README.md) | Tomomi |
111111
| 04 | Techniques for machine learning | [Introduction](1-Introduction/README.md) | What techniques do ML researchers use to build ML models? | [Lesson](1-Introduction/4-techniques-of-ML/README.md) | Chris and Jen |
112-
| 05 | Introduction to regression | [Regression](2-Regression/README.md) | Get started with Python and Scikit-learn for regression models | <ul><li>[Python](2-Regression/1-Tools/README.md)</li><li>[R](2-Regression/1-Tools/solution/R/lesson_1.html)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
113-
| 06 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Visualize and clean data in preparation for ML | <ul><li>[Python](2-Regression/2-Data/README.md)</li><li>[R](2-Regression/2-Data/solution/R/lesson_2.html)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
114-
| 07 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Build linear and polynomial regression models | <ul><li>[Python](2-Regression/3-Linear/README.md)</li><li>[R](2-Regression/3-Linear/solution/R/lesson_3.html)</li></ul> | <ul><li>Jen and Dmitry</li><li>Eric Wanjau</li></ul> |
115-
| 08 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Build a logistic regression model | <ul><li>[Python](2-Regression/4-Logistic/README.md) </li><li>[R](2-Regression/4-Logistic/solution/R/lesson_4.html)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
112+
| 05 | Introduction to regression | [Regression](2-Regression/README.md) | Get started with Python and Scikit-learn for regression models | [Python](2-Regression/1-Tools/README.md)[R](2-Regression/1-Tools/solution/R/lesson_1.html) | JenEric Wanjau |
113+
| 06 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Visualize and clean data in preparation for ML | [Python](2-Regression/2-Data/README.md)[R](2-Regression/2-Data/solution/R/lesson_2.html) | JenEric Wanjau |
114+
| 07 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Build linear and polynomial regression models | [Python](2-Regression/3-Linear/README.md)[R](2-Regression/3-Linear/solution/R/lesson_3.html) | Jen and DmitryEric Wanjau |
115+
| 08 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Build a logistic regression model | [Python](2-Regression/4-Logistic/README.md) [R](2-Regression/4-Logistic/solution/R/lesson_4.html) | JenEric Wanjau |
116116
| 09 | A Web App 🔌 | [Web App](3-Web-App/README.md) | Build a web app to use your trained model | [Python](3-Web-App/1-Web-App/README.md) | Jen |
117-
| 10 | Introduction to classification | [Classification](4-Classification/README.md) | Clean, prep, and visualize your data; introduction to classification | <ul><li> [Python](4-Classification/1-Introduction/README.md) </li><li>[R](4-Classification/1-Introduction/solution/R/lesson_10.html) | <ul><li>Jen and Cassie</li><li>Eric Wanjau</li></ul> |
118-
| 11 | Delicious Asian and Indian cuisines 🍜 | [Classification](4-Classification/README.md) | Introduction to classifiers | <ul><li> [Python](4-Classification/2-Classifiers-1/README.md)</li><li>[R](4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | <ul><li>Jen and Cassie</li><li>Eric Wanjau</li></ul> |
119-
| 12 | Delicious Asian and Indian cuisines 🍜 | [Classification](4-Classification/README.md) | More classifiers | <ul><li> [Python](4-Classification/3-Classifiers-2/README.md)</li><li>[R](4-Classification/3-Classifiers-2/solution/R/lesson_12.html) | <ul><li>Jen and Cassie</li><li>Eric Wanjau</li></ul> |
117+
| 10 | Introduction to classification | [Classification](4-Classification/README.md) | Clean, prep, and visualize your data; introduction to classification | [Python](4-Classification/1-Introduction/README.md) [R](4-Classification/1-Introduction/solution/R/lesson_10.html) | Jen and CassieEric Wanjau |
118+
| 11 | Delicious Asian and Indian cuisines 🍜 | [Classification](4-Classification/README.md) | Introduction to classifiers | [Python](4-Classification/2-Classifiers-1/README.md)[R](4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | Jen and CassieEric Wanjau |
119+
| 12 | Delicious Asian and Indian cuisines 🍜 | [Classification](4-Classification/README.md) | More classifiers | [Python](4-Classification/3-Classifiers-2/README.md)[R](4-Classification/3-Classifiers-2/solution/R/lesson_12.html) | Jen and CassieEric Wanjau |
120120
| 13 | Delicious Asian and Indian cuisines 🍜 | [Classification](4-Classification/README.md) | Build a recommender web app using your model | [Python](4-Classification/4-Applied/README.md) | Jen |
121-
| 14 | Introduction to clustering | [Clustering](5-Clustering/README.md) | Clean, prep, and visualize your data; Introduction to clustering | <ul><li> [Python](5-Clustering/1-Visualize/README.md)</li><li>[R](5-Clustering/1-Visualize/solution/R/lesson_14.html) | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
122-
| 15 | Exploring Nigerian Musical Tastes 🎧 | [Clustering](5-Clustering/README.md) | Explore the K-Means clustering method | <ul><li> [Python](5-Clustering/2-K-Means/README.md)</li><li>[R](5-Clustering/2-K-Means/solution/R/lesson_15.html) | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
121+
| 14 | Introduction to clustering | [Clustering](5-Clustering/README.md) | Clean, prep, and visualize your data; Introduction to clustering | [Python](5-Clustering/1-Visualize/README.md)[R](5-Clustering/1-Visualize/solution/R/lesson_14.html) | JenEric Wanjau |
122+
| 15 | Exploring Nigerian Musical Tastes 🎧 | [Clustering](5-Clustering/README.md) | Explore the K-Means clustering method | [Python](5-Clustering/2-K-Means/README.md)[R](5-Clustering/2-K-Means/solution/R/lesson_15.html) | JenEric Wanjau |
123123
| 16 | Introduction to natural language processing ☕️ | [Natural language processing](6-NLP/README.md) | Learn the basics about NLP by building a simple bot | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen |
124124
| 17 | Common NLP Tasks ☕️ | [Natural language processing](6-NLP/README.md) | Deepen your NLP knowledge by understanding common tasks required when dealing with language structures | [Python](6-NLP/2-Tasks/README.md) | Stephen |
125125
| 18 | Translation and sentiment analysis ♥️ | [Natural language processing](6-NLP/README.md) | Translation and sentiment analysis with Jane Austen | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen |

0 commit comments

Comments
 (0)