@@ -596,26 +596,24 @@ Status DequantizeLinear<T>::Compute(OpKernelContext* ctx) const {
596596 KernelDefBuilder () \
597597 .TypeConstraint(" T1" , {DataTypeImpl::GetTensorType<float >(), \
598598 DataTypeImpl::GetTensorType<MLFloat16>()}) \
599- .TypeConstraint(" T2" , {DataTypeImpl::GetTensorType<float >(), \
600- DataTypeImpl::GetTensorType<MLFloat16>()}) \
601- .TypeConstraint(" T3" , DataTypeImpl::GetTensorType<T>()), \
599+ .TypeConstraint(" T2" , DataTypeImpl::GetTensorType<T>()), \
602600 QuantizeLinear<T>);
603601
604- // Opset 23 — תואם שמות הסכמה: T1=x, T2=y_scale, T3=y/y_zero_point
602+ // Opset 23 — aligns with ONNX schema parameter names:
603+ // T1 = X
604+ // T2 = Y_scale
605+ // T3 = Y / Y_zero_point (quantized output)
605606#define REGISTER_QUANTIZELINEAR_OPSET23 (T ) \
606607 ONNX_CPU_OPERATOR_VERSIONED_TYPED_KERNEL ( \
607608 QuantizeLinear, \
608609 23 , \
609610 23 , \
610611 T, \
611612 KernelDefBuilder () \
612- /* T1: x */ \
613613 .TypeConstraint(" T1" , {DataTypeImpl::GetTensorType<float >(), \
614614 DataTypeImpl::GetTensorType<MLFloat16>()}) \
615- /* T2: y_scale */ \
616615 .TypeConstraint(" T2" , {DataTypeImpl::GetTensorType<float >(), \
617616 DataTypeImpl::GetTensorType<MLFloat16>()}) \
618- /* T3: y / y_zero_point == סוג הפלט */ \
619617 .TypeConstraint(" T3" , DataTypeImpl::GetTensorType<T>()), \
620618 QuantizeLinear<T>)
621619
@@ -682,7 +680,6 @@ REGISTER_QUANTIZELINEAR_OPSET23(Float8E5M2)
682680REGISTER_QUANTIZELINEAR_OPSET23(Float8E5M2FNUZ)
683681#endif
684682
685-
686683// Opset 21 added 16-bit and 4-bit int support to Q ops.
687684// TODO(adrianlizarraga): Support int4 and block quantization.
688685REGISTER_QUANTIZELINEAR_VERSIONED (int8_t , 21 , 22 )
0 commit comments