Skip to content

Commit b40682f

Browse files
committed
updated notebook
1 parent d0eae1d commit b40682f

File tree

2 files changed

+226
-3
lines changed

2 files changed

+226
-3
lines changed

README.md

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -93,8 +93,6 @@ from sempy_labs import lakehouse as lake
9393
from sempy_labs import report as rep
9494
from sempy_labs.tom import connect_semantic_model
9595
from sempy_labs.report import ReportWrapper
96-
from sempy_labs import ConnectWarehouse
97-
from sempy_labs import ConnectLakehouse
9896
```
9997

10098
## Load Semantic Link Labs into a custom [Fabric environment](https://learn.microsoft.com/fabric/data-engineering/create-and-use-environment)

notebooks/SQL.ipynb

Lines changed: 226 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1,226 @@
1-
{"cells":[{"cell_type":"markdown","id":"5c27dfd1-4fe0-4a97-92e6-ddf78889aa93","metadata":{"nteract":{"transient":{"deleting":false}}},"source":["### Install the latest .whl package\n","\n","Check [here](https://pypi.org/project/semantic-link-labs/) to see the latest version."]},{"cell_type":"code","execution_count":null,"id":"d5cae9db-cef9-48a8-a351-9c5fcc99645c","metadata":{"jupyter":{"outputs_hidden":true,"source_hidden":false},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["%pip install semantic-link-labs"]},{"cell_type":"markdown","id":"b195eae8","metadata":{},"source":["### Import the library and necessary packages"]},{"cell_type":"code","execution_count":null,"id":"1344e286","metadata":{},"outputs":[],"source":["import sempy_labs as labs\n","from sempy_labs import ConnectWarehouse\n","from sempy_labs import ConnectLakehouse\n","\n","lakehouse_name = ''\n","lakehouse_workspace_name = ''\n","warehouse_name = ''\n","warehouse_workspace_name = ''"]},{"cell_type":"markdown","id":"55e5ca67","metadata":{},"source":["### Run a SQL query (or queries) against a Fabric warehouse"]},{"cell_type":"code","execution_count":null,"id":"a9f984e9","metadata":{},"outputs":[],"source":["with ConnectWarehouse(warehouse=warehouse_name, workspace=warehouse_workspace_name) as sql:\n"," df = sql.query(\"SELECT * FROM Product\")\n"," display(df)"]},{"cell_type":"code","execution_count":null,"id":"865ac4a1","metadata":{},"outputs":[],"source":["with ConnectWarehouse(warehouse=warehouse_name, workspace=warehouse_workspace_name) as sql:\n"," dfs = sql.query([\"SELECT * FROM Product\", \"SELECT DISTINCT [Category] FROM Product\"])\n","\n","for df in dfs:\n"," display(df)"]},{"cell_type":"markdown","id":"bca53cd8","metadata":{},"source":["#### See the tables in a warehouse"]},{"cell_type":"code","execution_count":null,"id":"9af2cce7","metadata":{},"outputs":[],"source":["labs.get_warehouse_tables(warehouse=warehouse_name, workspace=warehouse_workspace_name)"]},{"cell_type":"markdown","id":"765f99ae","metadata":{},"source":["#### See the columns in each table in a warehouse"]},{"cell_type":"code","execution_count":null,"id":"1fabe168","metadata":{},"outputs":[],"source":["labs.get_warehouse_columns(warehouse=warehouse_name, workspace=warehouse_workspace_name)"]},{"cell_type":"markdown","id":"634700c3","metadata":{},"source":["### Run a T-SQL query (or queries) against a Fabric warehouse"]},{"cell_type":"code","execution_count":null,"id":"5dbf34f3","metadata":{},"outputs":[],"source":["with ConnectWarehouse(warehouse=warehouse_name, workspace=warehouse_workspace_name) as sql:\n"," sql.query(\"CREATE SCHEMA [Business]\")"]},{"cell_type":"code","execution_count":null,"id":"ec8ddb81","metadata":{},"outputs":[],"source":["with ConnectWarehouse(warehouse=warehouse_name, workspace=warehouse_workspace_name) as sql:\n"," sql.query([\"CREATE SCHEMA [Business]\", \"CREATE SCHEMA [Marketing]\"])"]},{"cell_type":"markdown","id":"d5b090da","metadata":{},"source":["### Run a SQL query (or queries) against a Fabric lakehouse"]},{"cell_type":"code","execution_count":null,"id":"4dca7f4a","metadata":{},"outputs":[],"source":["with ConnectLakehouse(lakehouse=lakehouse_name, workspace=lakehouse_workspace_name) as sql:\n"," df = sql.query(\"SELECT * FROM Product\")\n"," display(df)"]},{"cell_type":"code","execution_count":null,"id":"b9606ae8","metadata":{},"outputs":[],"source":["with ConnectLakehouse(lakehouse=lakehouse_name, workspace=lakehouse_workspace_name) as sql:\n"," dfs = sql.query([\"SELECT * FROM Product\", \"SELECT DISTINCT [Category] FROM Product\"])\n","\n","for df in dfs:\n"," display(df)"]}],"metadata":{"kernel_info":{"name":"synapse_pyspark"},"kernelspec":{"display_name":"Synapse PySpark","language":"Python","name":"synapse_pyspark"},"language_info":{"name":"python"},"microsoft":{"language":"python"},"nteract":{"version":"[email protected]"},"spark_compute":{"compute_id":"/trident/default"},"synapse_widget":{"state":{},"version":"0.1"},"widgets":{}},"nbformat":4,"nbformat_minor":5}
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"id": "5c27dfd1-4fe0-4a97-92e6-ddf78889aa93",
6+
"metadata": {
7+
"nteract": {
8+
"transient": {
9+
"deleting": false
10+
}
11+
}
12+
},
13+
"source": [
14+
"### Install the latest .whl package\n",
15+
"\n",
16+
"Check [here](https://pypi.org/project/semantic-link-labs/) to see the latest version."
17+
]
18+
},
19+
{
20+
"cell_type": "code",
21+
"execution_count": null,
22+
"id": "d5cae9db-cef9-48a8-a351-9c5fcc99645c",
23+
"metadata": {
24+
"jupyter": {
25+
"outputs_hidden": true,
26+
"source_hidden": false
27+
},
28+
"nteract": {
29+
"transient": {
30+
"deleting": false
31+
}
32+
}
33+
},
34+
"outputs": [],
35+
"source": [
36+
"%pip install semantic-link-labs"
37+
]
38+
},
39+
{
40+
"cell_type": "markdown",
41+
"id": "b195eae8",
42+
"metadata": {},
43+
"source": [
44+
"### Import the library and necessary packages"
45+
]
46+
},
47+
{
48+
"cell_type": "code",
49+
"execution_count": null,
50+
"id": "1344e286",
51+
"metadata": {},
52+
"outputs": [],
53+
"source": [
54+
"import sempy_labs as labs\n",
55+
"\n",
56+
"lakehouse_name = ''\n",
57+
"lakehouse_workspace_name = ''\n",
58+
"warehouse_name = ''\n",
59+
"warehouse_workspace_name = ''"
60+
]
61+
},
62+
{
63+
"cell_type": "markdown",
64+
"id": "55e5ca67",
65+
"metadata": {},
66+
"source": [
67+
"### Run a SQL query (or queries) against a Fabric warehouse"
68+
]
69+
},
70+
{
71+
"cell_type": "code",
72+
"execution_count": null,
73+
"id": "a9f984e9",
74+
"metadata": {},
75+
"outputs": [],
76+
"source": [
77+
"with labs.ConnectWarehouse(warehouse=warehouse_name, workspace=warehouse_workspace_name) as sql:\n",
78+
" df = sql.query(\"SELECT * FROM Product\")\n",
79+
" display(df)"
80+
]
81+
},
82+
{
83+
"cell_type": "code",
84+
"execution_count": null,
85+
"id": "865ac4a1",
86+
"metadata": {},
87+
"outputs": [],
88+
"source": [
89+
"with labs.ConnectWarehouse(warehouse=warehouse_name, workspace=warehouse_workspace_name) as sql:\n",
90+
" dfs = sql.query([\"SELECT * FROM Product\", \"SELECT DISTINCT [Category] FROM Product\"])\n",
91+
"\n",
92+
"for df in dfs:\n",
93+
" display(df)"
94+
]
95+
},
96+
{
97+
"cell_type": "markdown",
98+
"id": "bca53cd8",
99+
"metadata": {},
100+
"source": [
101+
"#### See the tables in a warehouse"
102+
]
103+
},
104+
{
105+
"cell_type": "code",
106+
"execution_count": null,
107+
"id": "9af2cce7",
108+
"metadata": {},
109+
"outputs": [],
110+
"source": [
111+
"labs.get_warehouse_tables(warehouse=warehouse_name, workspace=warehouse_workspace_name)"
112+
]
113+
},
114+
{
115+
"cell_type": "markdown",
116+
"id": "765f99ae",
117+
"metadata": {},
118+
"source": [
119+
"#### See the columns in each table in a warehouse"
120+
]
121+
},
122+
{
123+
"cell_type": "code",
124+
"execution_count": null,
125+
"id": "1fabe168",
126+
"metadata": {},
127+
"outputs": [],
128+
"source": [
129+
"labs.get_warehouse_columns(warehouse=warehouse_name, workspace=warehouse_workspace_name)"
130+
]
131+
},
132+
{
133+
"cell_type": "markdown",
134+
"id": "634700c3",
135+
"metadata": {},
136+
"source": [
137+
"### Run a T-SQL query (or queries) against a Fabric warehouse"
138+
]
139+
},
140+
{
141+
"cell_type": "code",
142+
"execution_count": null,
143+
"id": "5dbf34f3",
144+
"metadata": {},
145+
"outputs": [],
146+
"source": [
147+
"with labs.ConnectWarehouse(warehouse=warehouse_name, workspace=warehouse_workspace_name) as sql:\n",
148+
" sql.query(\"CREATE SCHEMA [Business]\")"
149+
]
150+
},
151+
{
152+
"cell_type": "code",
153+
"execution_count": null,
154+
"id": "ec8ddb81",
155+
"metadata": {},
156+
"outputs": [],
157+
"source": [
158+
"with labs.ConnectWarehouse(warehouse=warehouse_name, workspace=warehouse_workspace_name) as sql:\n",
159+
" sql.query([\"CREATE SCHEMA [Business]\", \"CREATE SCHEMA [Marketing]\"])"
160+
]
161+
},
162+
{
163+
"cell_type": "markdown",
164+
"id": "d5b090da",
165+
"metadata": {},
166+
"source": [
167+
"### Run a SQL query (or queries) against a Fabric lakehouse"
168+
]
169+
},
170+
{
171+
"cell_type": "code",
172+
"execution_count": null,
173+
"id": "4dca7f4a",
174+
"metadata": {},
175+
"outputs": [],
176+
"source": [
177+
"with labs.ConnectLakehouse(lakehouse=lakehouse_name, workspace=lakehouse_workspace_name) as sql:\n",
178+
" df = sql.query(\"SELECT * FROM Product\")\n",
179+
" display(df)"
180+
]
181+
},
182+
{
183+
"cell_type": "code",
184+
"execution_count": null,
185+
"id": "b9606ae8",
186+
"metadata": {},
187+
"outputs": [],
188+
"source": [
189+
"with labs.ConnectLakehouse(lakehouse=lakehouse_name, workspace=lakehouse_workspace_name) as sql:\n",
190+
" dfs = sql.query([\"SELECT * FROM Product\", \"SELECT DISTINCT [Category] FROM Product\"])\n",
191+
"\n",
192+
"for df in dfs:\n",
193+
" display(df)"
194+
]
195+
}
196+
],
197+
"metadata": {
198+
"kernel_info": {
199+
"name": "synapse_pyspark"
200+
},
201+
"kernelspec": {
202+
"display_name": "Synapse PySpark",
203+
"language": "Python",
204+
"name": "synapse_pyspark"
205+
},
206+
"language_info": {
207+
"name": "python"
208+
},
209+
"microsoft": {
210+
"language": "python"
211+
},
212+
"nteract": {
213+
"version": "[email protected]"
214+
},
215+
"spark_compute": {
216+
"compute_id": "/trident/default"
217+
},
218+
"synapse_widget": {
219+
"state": {},
220+
"version": "0.1"
221+
},
222+
"widgets": {}
223+
},
224+
"nbformat": 4,
225+
"nbformat_minor": 5
226+
}

0 commit comments

Comments
 (0)