|
| 1 | +import ctypes |
| 2 | +import dataclasses |
| 3 | +import enum |
| 4 | +import itertools |
| 5 | +import re |
| 6 | +import typing |
| 7 | + |
| 8 | +import mlir.runtime as rt |
| 9 | +from mlir import ir |
| 10 | +from mlir.dialects import sparse_tensor |
| 11 | + |
| 12 | +import numpy as np |
| 13 | + |
| 14 | +from ._common import ( |
| 15 | + PackedArgumentTuple, |
| 16 | + _take_owneship, |
| 17 | + fn_cache, |
| 18 | + numpy_to_ranked_memref, |
| 19 | + ranked_memref_to_numpy, |
| 20 | +) |
| 21 | +from ._dtypes import DType, asdtype |
| 22 | + |
| 23 | +_CAMEL_TO_SNAKE = [re.compile("(.)([A-Z][a-z]+)"), re.compile("([a-z0-9])([A-Z])")] |
| 24 | + |
| 25 | + |
| 26 | +def _camel_to_snake(name: str) -> str: |
| 27 | + for exp in _CAMEL_TO_SNAKE: |
| 28 | + name = exp.sub(r"\1_\2", name) |
| 29 | + |
| 30 | + return name.lower() |
| 31 | + |
| 32 | + |
| 33 | +@fn_cache |
| 34 | +def get_nd_memref_descr(rank: int, dtype: type[DType]) -> type: |
| 35 | + return rt.make_nd_memref_descriptor(rank, dtype.to_ctype()) |
| 36 | + |
| 37 | + |
| 38 | +class LevelProperties(enum.Flag): |
| 39 | + NonOrdered = enum.auto() |
| 40 | + NonUnique = enum.auto() |
| 41 | + |
| 42 | + def build(self) -> list[sparse_tensor.LevelProperty]: |
| 43 | + return [getattr(sparse_tensor.LevelProperty, _camel_to_snake(p.name)) for p in type(self) if p in self] |
| 44 | + |
| 45 | + |
| 46 | +class LevelFormat(enum.Enum): |
| 47 | + Dense = "dense" |
| 48 | + Compressed = "compressed" |
| 49 | + Singleton = "singleton" |
| 50 | + |
| 51 | + def build(self) -> sparse_tensor.LevelFormat: |
| 52 | + return getattr(sparse_tensor.LevelFormat, self.value) |
| 53 | + |
| 54 | + |
| 55 | +@dataclasses.dataclass(eq=True, frozen=True, kw_only=True) |
| 56 | +class Level: |
| 57 | + format: LevelFormat |
| 58 | + properties: LevelProperties = LevelProperties(0) |
| 59 | + |
| 60 | + def build(self): |
| 61 | + sparse_tensor.EncodingAttr.build_level_type(self.format.build(), self.properties.build()) |
| 62 | + |
| 63 | + |
| 64 | +@dataclasses.dataclass(kw_only=True) |
| 65 | +class StorageFormat: |
| 66 | + levels: tuple[Level, ...] |
| 67 | + order: typing.Literal["C", "F"] | tuple[int, ...] |
| 68 | + pos_width: int |
| 69 | + crd_width: int |
| 70 | + dtype: type[DType] |
| 71 | + |
| 72 | + @property |
| 73 | + def storage_rank(self) -> int: |
| 74 | + return len(self.levels) |
| 75 | + |
| 76 | + @property |
| 77 | + def rank(self) -> int: |
| 78 | + return self.storage_rank |
| 79 | + |
| 80 | + def __post_init__(self): |
| 81 | + rank = self.storage_rank |
| 82 | + self.dtype = asdtype(self.dtype) |
| 83 | + if self.order == "C": |
| 84 | + self.order = tuple(range(rank)) |
| 85 | + return |
| 86 | + |
| 87 | + if self.order == "F": |
| 88 | + self.order = tuple(reversed(range(rank))) |
| 89 | + return |
| 90 | + |
| 91 | + if sorted(self.order) != list(range(rank)): |
| 92 | + raise ValueError(f"`sorted(self.order) != list(range(rank))`, {self.order=}, {rank=}.") |
| 93 | + |
| 94 | + self.order = tuple(self.order) |
| 95 | + |
| 96 | + @fn_cache |
| 97 | + def get_mlir_type(self, *, shape: tuple[int, ...]) -> ir.RankedTensorType: |
| 98 | + if len(shape) != self.rank: |
| 99 | + raise ValueError(f"`len(shape) != self.rank`, {shape=}, {self.rank=}") |
| 100 | + mlir_levels = [level.build() for level in self.levels] |
| 101 | + mlir_order = list(self.order) |
| 102 | + mlir_reverse_order = [0] * self.rank |
| 103 | + for i, r in enumerate(mlir_order): |
| 104 | + mlir_reverse_order[r] = i |
| 105 | + |
| 106 | + dtype = self.dtype.get_mlir_type() |
| 107 | + encoding = sparse_tensor.EncodingAttr.get( |
| 108 | + mlir_levels, mlir_order, mlir_reverse_order, self.pos_width, self.crd_width |
| 109 | + ) |
| 110 | + return ir.RankedTensorType.get(list(shape), dtype, encoding) |
| 111 | + |
| 112 | + @fn_cache |
| 113 | + def get_ctypes_type(self): |
| 114 | + ptr_dtype = asdtype(getattr(np, f"uint{self.pos_width}")) |
| 115 | + idx_dtype = asdtype(getattr(np, f"uint{self.crd_width}")) |
| 116 | + |
| 117 | + def get_fields(): |
| 118 | + fields = [] |
| 119 | + compressed_counter = 0 |
| 120 | + for level, next_level in itertools.zip_longest(self.levels, self.levels[1:]): |
| 121 | + if LevelFormat.Compressed == level.format: |
| 122 | + compressed_counter += 1 |
| 123 | + fields.append((f"pointers_to_{compressed_counter}", get_nd_memref_descr(1, ptr_dtype))) |
| 124 | + if next_level is not None and LevelFormat.Singleton == next_level.format: |
| 125 | + fields.append((f"indices_{compressed_counter}", get_nd_memref_descr(2, idx_dtype))) |
| 126 | + else: |
| 127 | + fields.append((f"indices_{compressed_counter}", get_nd_memref_descr(1, idx_dtype))) |
| 128 | + |
| 129 | + fields.append(("values", get_nd_memref_descr(1, self.dtype.np_dtype))) |
| 130 | + return fields |
| 131 | + |
| 132 | + storage_format = self |
| 133 | + |
| 134 | + class Format(ctypes.Structure): |
| 135 | + _fields_ = get_fields() |
| 136 | + |
| 137 | + def get_mlir_type(self, *, shape: tuple[int, ...]): |
| 138 | + return self.get_storage_format().get_mlir_type(shape=shape) |
| 139 | + |
| 140 | + def to_module_arg(self) -> list: |
| 141 | + return [ctypes.pointer(ctypes.pointer(f) for f in self.get__fields_())] |
| 142 | + |
| 143 | + def get__fields_(self) -> list: |
| 144 | + return [getattr(self, field[0]) for field in self._fields_] |
| 145 | + |
| 146 | + def to_constituent_arrays(self) -> PackedArgumentTuple: |
| 147 | + return PackedArgumentTuple(tuple(ranked_memref_to_numpy(field) for field in self.get__fields_())) |
| 148 | + |
| 149 | + def get_storage_format(self) -> StorageFormat: |
| 150 | + return storage_format |
| 151 | + |
| 152 | + @classmethod |
| 153 | + def from_constituent_arrays(cls, arrs: list[np.ndarray]) -> "Format": |
| 154 | + inst = cls(*[numpy_to_ranked_memref(arr) for arr in arrs]) |
| 155 | + for arr in arrs: |
| 156 | + _take_owneship(inst, arr) |
| 157 | + return inst |
| 158 | + |
| 159 | + return Format |
| 160 | + |
| 161 | + def __hash__(self): |
| 162 | + return hash(id(self)) |
| 163 | + |
| 164 | + def __eq__(self, value): |
| 165 | + return self is value |
0 commit comments