|
| 1 | +/* |
| 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | + * All rights reserved. |
| 4 | + * |
| 5 | + * This source code is licensed under the BSD-style license found in the |
| 6 | + * LICENSE file in the root directory of this source tree. |
| 7 | + */ |
| 8 | + |
| 9 | +#include "deeplearning/fbgemm/fbgemm_gpu/src/dram_kv_embedding_cache/dram_kv_inference_embedding.h" |
| 10 | + |
| 11 | +#include <fmt/format.h> |
| 12 | +#include <glog/logging.h> |
| 13 | +#include <gtest/gtest.h> |
| 14 | +#include <chrono> |
| 15 | +#include <random> |
| 16 | +#include <vector> |
| 17 | + |
| 18 | +namespace kv_mem { |
| 19 | + |
| 20 | +class KVEmbeddingInferenceTest : public ::testing::Test { |
| 21 | + protected: |
| 22 | + static constexpr int EMBEDDING_DIM = 128; |
| 23 | + static constexpr int NUM_SHARDS = 8; |
| 24 | + |
| 25 | + void SetUp() override { |
| 26 | + FLAGS_logtostderr = true; |
| 27 | + FLAGS_minloglevel = 0; |
| 28 | + FLAGS_v = 1; |
| 29 | + |
| 30 | + auto feature_evict_config = c10::make_intrusive<FeatureEvictConfig>( |
| 31 | + 3, |
| 32 | + 4, |
| 33 | + std::nullopt, |
| 34 | + std::nullopt, |
| 35 | + std::vector<int64_t>{1}, |
| 36 | + std::nullopt, |
| 37 | + std::nullopt, |
| 38 | + std::nullopt, |
| 39 | + std::nullopt, |
| 40 | + std::nullopt, |
| 41 | + std::nullopt, |
| 42 | + std::vector<int64_t>{EMBEDDING_DIM}, |
| 43 | + std::nullopt, |
| 44 | + std::nullopt, |
| 45 | + 0, |
| 46 | + 0, |
| 47 | + 0); |
| 48 | + |
| 49 | + auto hash_size_cumsum = at::tensor({0, 100000}, at::kLong); |
| 50 | + |
| 51 | + backend_ = std::make_unique<DramKVInferenceEmbedding<float>>( |
| 52 | + EMBEDDING_DIM, |
| 53 | + -0.1, |
| 54 | + 0.1, |
| 55 | + feature_evict_config, |
| 56 | + NUM_SHARDS, |
| 57 | + 32, |
| 58 | + 32, |
| 59 | + false, |
| 60 | + std::nullopt, |
| 61 | + hash_size_cumsum, |
| 62 | + false); |
| 63 | + } |
| 64 | + |
| 65 | + void TearDown() override { |
| 66 | + backend_.reset(); |
| 67 | + } |
| 68 | + |
| 69 | + static std::vector<float> generateEmbedding(int64_t embedding_id) { |
| 70 | + std::vector<float> embedding(EMBEDDING_DIM); |
| 71 | + |
| 72 | + // Use both embedding_id and current time as seed for randomness |
| 73 | + auto now = std::chrono::system_clock::now(); |
| 74 | + auto time_seed = std::chrono::duration_cast<std::chrono::nanoseconds>( |
| 75 | + now.time_since_epoch()) |
| 76 | + .count(); |
| 77 | + uint32_t combined_seed = static_cast<uint32_t>(embedding_id ^ time_seed); |
| 78 | + |
| 79 | + std::mt19937 rng(combined_seed); |
| 80 | + std::uniform_real_distribution<float> dist(-0.1f, 0.1f); |
| 81 | + for (int i = 0; i < EMBEDDING_DIM; ++i) { |
| 82 | + embedding[i] = dist(rng); |
| 83 | + } |
| 84 | + return embedding; |
| 85 | + } |
| 86 | + |
| 87 | + std::unique_ptr<DramKVInferenceEmbedding<float>> backend_; |
| 88 | +}; |
| 89 | + |
| 90 | +TEST_F(KVEmbeddingInferenceTest, InferenceLifecycleWithMetadata) { |
| 91 | + const int64_t embedding_id = 12345; |
| 92 | + |
| 93 | + auto now = std::chrono::system_clock::now(); |
| 94 | + auto now_seconds = |
| 95 | + std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch()) |
| 96 | + .count(); |
| 97 | + const uint32_t snapshot_timestamp = static_cast<uint32_t>(now_seconds - 120); |
| 98 | + |
| 99 | + auto embedding_data = generateEmbedding(embedding_id); |
| 100 | + |
| 101 | + LOG(INFO) << "STEP 1: Define test embedding"; |
| 102 | + LOG(INFO) << "Embedding ID: " << embedding_id; |
| 103 | + LOG(INFO) << "Timestamp: " << snapshot_timestamp |
| 104 | + << " (current time - 2 minutes)"; |
| 105 | + LOG(INFO) << "Dimension: " << EMBEDDING_DIM; |
| 106 | + LOG(INFO) << "First 5 elements: [" << embedding_data[0] << ", " |
| 107 | + << embedding_data[1] << ", " << embedding_data[2] << ", " |
| 108 | + << embedding_data[3] << ", " << embedding_data[4] << "]"; |
| 109 | + |
| 110 | + auto indices_tensor = at::tensor({embedding_id}, at::kLong); |
| 111 | + auto weights_tensor = at::from_blob( |
| 112 | + embedding_data.data(), |
| 113 | + {1, EMBEDDING_DIM}, |
| 114 | + at::TensorOptions().dtype(at::kFloat)); |
| 115 | + auto count_tensor = at::tensor({1}, at::kInt); |
| 116 | + |
| 117 | + LOG(INFO) << "STEP 2: Insert embedding into cache"; |
| 118 | + folly::coro::blockingWait(backend_->inference_set_kv_db_async( |
| 119 | + indices_tensor, weights_tensor, count_tensor, snapshot_timestamp)); |
| 120 | + LOG(INFO) << "Insertion completed"; |
| 121 | + |
| 122 | + auto retrieved_embedding = at::zeros({1, EMBEDDING_DIM}, at::kFloat); |
| 123 | + |
| 124 | + LOG(INFO) << "STEP 3: Retrieve embedding from cache"; |
| 125 | + folly::coro::blockingWait(backend_->get_kv_db_async( |
| 126 | + indices_tensor, retrieved_embedding, count_tensor)); |
| 127 | + LOG(INFO) << "Retrieval completed"; |
| 128 | + |
| 129 | + auto retrieved_ptr = retrieved_embedding.data_ptr<float>(); |
| 130 | + bool all_match = true; |
| 131 | + int mismatch_count = 0; |
| 132 | + |
| 133 | + LOG(INFO) << "STEP 4: Verify embedding consistency"; |
| 134 | + for (int i = 0; i < EMBEDDING_DIM; ++i) { |
| 135 | + if (std::abs(retrieved_ptr[i] - embedding_data[i]) > 1e-5f) { |
| 136 | + all_match = false; |
| 137 | + mismatch_count++; |
| 138 | + } |
| 139 | + } |
| 140 | + |
| 141 | + if (all_match) { |
| 142 | + LOG(INFO) << "All " << EMBEDDING_DIM << " dimensions match"; |
| 143 | + } else { |
| 144 | + LOG(ERROR) << "Found " << mismatch_count << " mismatches out of " |
| 145 | + << EMBEDDING_DIM << " dimensions"; |
| 146 | + } |
| 147 | + |
| 148 | + ASSERT_TRUE(all_match) << "Retrieved embedding must match inserted embedding"; |
| 149 | + |
| 150 | + LOG(INFO) << "STEP 5: Test repeated reads"; |
| 151 | + for (int iteration = 1; iteration <= 3; ++iteration) { |
| 152 | + auto read_again = at::zeros({1, EMBEDDING_DIM}, at::kFloat); |
| 153 | + folly::coro::blockingWait( |
| 154 | + backend_->get_kv_db_async(indices_tensor, read_again, count_tensor)); |
| 155 | + |
| 156 | + auto read_ptr = read_again.data_ptr<float>(); |
| 157 | + bool matches = true; |
| 158 | + for (int i = 0; i < EMBEDDING_DIM; ++i) { |
| 159 | + if (std::abs(read_ptr[i] - embedding_data[i]) > 1e-5f) { |
| 160 | + matches = false; |
| 161 | + break; |
| 162 | + } |
| 163 | + } |
| 164 | + LOG(INFO) << "Read #" << iteration << ": " |
| 165 | + << (matches ? "Match" : "Mismatch"); |
| 166 | + } |
| 167 | + |
| 168 | + LOG(INFO) << "STEP 6: Trigger eviction"; |
| 169 | + auto eviction_time = std::chrono::system_clock::now(); |
| 170 | + auto eviction_seconds = std::chrono::duration_cast<std::chrono::seconds>( |
| 171 | + eviction_time.time_since_epoch()) |
| 172 | + .count(); |
| 173 | + uint32_t eviction_threshold = static_cast<uint32_t>(eviction_seconds - 60); |
| 174 | + |
| 175 | + LOG(INFO) << "Eviction threshold: " << eviction_threshold; |
| 176 | + backend_->trigger_feature_evict(eviction_threshold); |
| 177 | + backend_->wait_until_eviction_done(); |
| 178 | + LOG(INFO) << "Eviction completed"; |
| 179 | + |
| 180 | + auto post_eviction_embedding = at::zeros({1, EMBEDDING_DIM}, at::kFloat); |
| 181 | + |
| 182 | + LOG(INFO) << "STEP 7: Read embedding after eviction"; |
| 183 | + folly::coro::blockingWait(backend_->get_kv_db_async( |
| 184 | + indices_tensor, post_eviction_embedding, count_tensor)); |
| 185 | + |
| 186 | + auto post_eviction_ptr = post_eviction_embedding.data_ptr<float>(); |
| 187 | + bool values_changed = false; |
| 188 | + int differences = 0; |
| 189 | + |
| 190 | + for (int i = 0; i < EMBEDDING_DIM; ++i) { |
| 191 | + if (std::abs(post_eviction_ptr[i] - embedding_data[i]) > 1e-5f) { |
| 192 | + values_changed = true; |
| 193 | + differences++; |
| 194 | + } |
| 195 | + } |
| 196 | + |
| 197 | + LOG(INFO) << "Differences found: " << differences << "/" << EMBEDDING_DIM; |
| 198 | + |
| 199 | + if (values_changed) { |
| 200 | + LOG(INFO) << "Eviction successful - values changed"; |
| 201 | + } else { |
| 202 | + LOG(ERROR) << "Eviction may have failed - values unchanged"; |
| 203 | + } |
| 204 | + |
| 205 | + LOG(INFO) << "Original (cached): [" << embedding_data[0] << ", " |
| 206 | + << embedding_data[1] << ", " << embedding_data[2] << ", " |
| 207 | + << embedding_data[3] << ", " << embedding_data[4] << "]"; |
| 208 | + LOG(INFO) << "After eviction: [" << post_eviction_ptr[0] << ", " |
| 209 | + << post_eviction_ptr[1] << ", " << post_eviction_ptr[2] << ", " |
| 210 | + << post_eviction_ptr[3] << ", " << post_eviction_ptr[4] << "]"; |
| 211 | + |
| 212 | + ASSERT_TRUE(values_changed) << "Embedding should be different after eviction"; |
| 213 | + |
| 214 | + LOG(INFO) << "Test completed successfully"; |
| 215 | +} |
| 216 | + |
| 217 | +} // namespace kv_mem |
0 commit comments