@@ -327,7 +327,7 @@ def percentile(
327327 >>> pyhf.set_backend("numpy")
328328 >>> a = pyhf.tensorlib.astensor([[10, 7, 4], [3, 2, 1]])
329329 >>> pyhf.tensorlib.percentile(a, 50)
330- 3.5
330+ np.float64( 3.5)
331331 >>> pyhf.tensorlib.percentile(a, 50, axis=1)
332332 array([7., 2.])
333333
@@ -391,7 +391,7 @@ def simple_broadcast(self, *args: Sequence[Tensor[T]]) -> Sequence[Tensor[T]]:
391391 ... pyhf.tensorlib.astensor([1]),
392392 ... pyhf.tensorlib.astensor([2, 3, 4]),
393393 ... pyhf.tensorlib.astensor([5, 6, 7]))
394- [ array([1., 1., 1.]), array([2., 3., 4.]), array([5., 6., 7.])]
394+ ( array([1., 1., 1.]), array([2., 3., 4.]), array([5., 6., 7.]))
395395
396396 Args:
397397 args (Array of Tensors): Sequence of arrays
@@ -474,7 +474,7 @@ def poisson(self, n: Tensor[T], lam: Tensor[T]) -> ArrayLike:
474474 >>> import pyhf
475475 >>> pyhf.set_backend("numpy")
476476 >>> pyhf.tensorlib.poisson(5., 6.)
477- 0.16062314...
477+ np.float64( 0.16062314...)
478478 >>> values = pyhf.tensorlib.astensor([5., 9.])
479479 >>> rates = pyhf.tensorlib.astensor([6., 8.])
480480 >>> pyhf.tensorlib.poisson(values, rates)
@@ -517,7 +517,7 @@ def normal(self, x: Tensor[T], mu: Tensor[T], sigma: Tensor[T]) -> ArrayLike:
517517 >>> import pyhf
518518 >>> pyhf.set_backend("numpy")
519519 >>> pyhf.tensorlib.normal(0.5, 0., 1.)
520- 0.35206532...
520+ np.float64( 0.35206532...)
521521 >>> values = pyhf.tensorlib.astensor([0.5, 2.0])
522522 >>> means = pyhf.tensorlib.astensor([0., 2.3])
523523 >>> sigmas = pyhf.tensorlib.astensor([1., 0.8])
@@ -545,7 +545,7 @@ def normal_cdf(
545545 >>> import pyhf
546546 >>> pyhf.set_backend("numpy")
547547 >>> pyhf.tensorlib.normal_cdf(0.8)
548- 0.78814460...
548+ np.float64( 0.78814460...)
549549 >>> values = pyhf.tensorlib.astensor([0.8, 2.0])
550550 >>> pyhf.tensorlib.normal_cdf(values)
551551 array([0.7881446 , 0.97724987])
0 commit comments