@@ -320,7 +320,7 @@ def percentile(
320320 >>> pyhf.set_backend("numpy")
321321 >>> a = pyhf.tensorlib.astensor([[10, 7, 4], [3, 2, 1]])
322322 >>> pyhf.tensorlib.percentile(a, 50)
323- 3.5
323+ np.float64( 3.5)
324324 >>> pyhf.tensorlib.percentile(a, 50, axis=1)
325325 array([7., 2.])
326326
@@ -384,7 +384,7 @@ def simple_broadcast(self, *args: Sequence[Tensor[T]]) -> Sequence[Tensor[T]]:
384384 ... pyhf.tensorlib.astensor([1]),
385385 ... pyhf.tensorlib.astensor([2, 3, 4]),
386386 ... pyhf.tensorlib.astensor([5, 6, 7]))
387- [ array([1., 1., 1.]), array([2., 3., 4.]), array([5., 6., 7.])]
387+ ( array([1., 1., 1.]), array([2., 3., 4.]), array([5., 6., 7.]))
388388
389389 Args:
390390 args (Array of Tensors): Sequence of arrays
@@ -467,7 +467,7 @@ def poisson(self, n: Tensor[T], lam: Tensor[T]) -> ArrayLike:
467467 >>> import pyhf
468468 >>> pyhf.set_backend("numpy")
469469 >>> pyhf.tensorlib.poisson(5., 6.)
470- 0.16062314...
470+ np.float64( 0.16062314...)
471471 >>> values = pyhf.tensorlib.astensor([5., 9.])
472472 >>> rates = pyhf.tensorlib.astensor([6., 8.])
473473 >>> pyhf.tensorlib.poisson(values, rates)
@@ -510,7 +510,7 @@ def normal(self, x: Tensor[T], mu: Tensor[T], sigma: Tensor[T]) -> ArrayLike:
510510 >>> import pyhf
511511 >>> pyhf.set_backend("numpy")
512512 >>> pyhf.tensorlib.normal(0.5, 0., 1.)
513- 0.35206532...
513+ np.float64( 0.35206532...)
514514 >>> values = pyhf.tensorlib.astensor([0.5, 2.0])
515515 >>> means = pyhf.tensorlib.astensor([0., 2.3])
516516 >>> sigmas = pyhf.tensorlib.astensor([1., 0.8])
@@ -538,7 +538,7 @@ def normal_cdf(
538538 >>> import pyhf
539539 >>> pyhf.set_backend("numpy")
540540 >>> pyhf.tensorlib.normal_cdf(0.8)
541- 0.78814460...
541+ np.float64( 0.78814460...)
542542 >>> values = pyhf.tensorlib.astensor([0.8, 2.0])
543543 >>> pyhf.tensorlib.normal_cdf(values)
544544 array([0.7881446 , 0.97724987])
0 commit comments