|
28 | 28 | from sklearn.datasets import make_blobs |
29 | 29 |
|
30 | 30 | X, y = make_blobs(n_samples=[950, 50], centers=((-3, 0), (3, 0)), random_state=10) |
31 | | -plt.scatter(X[:, 0], X[:, 1], c=y) |
| 31 | +_ = plt.scatter(X[:, 0], X[:, 1], c=y) |
32 | 32 |
|
33 | 33 | # %% |
34 | 34 | # To introduce instance hardness in our dataset, we add some hard to classify samples: |
35 | 35 | X_hard, y_hard = make_blobs( |
36 | 36 | n_samples=10, centers=((3, 0), (-3, 0)), cluster_std=1, random_state=10 |
37 | 37 | ) |
38 | 38 | X, y = np.vstack((X, X_hard)), np.hstack((y, y_hard)) |
39 | | -plt.scatter(X[:, 0], X[:, 1], c=y) |
| 39 | +_ = plt.scatter(X[:, 0], X[:, 1], c=y) |
40 | 40 |
|
41 | 41 | # %% |
42 | 42 | # Compare cross validation scores using `StratifiedKFold` and `InstanceHardnessCV` |
|
69 | 69 | results = {} |
70 | 70 | for cv in ( |
71 | 71 | StratifiedKFold(n_splits=5, shuffle=True, random_state=10), |
72 | | - InstanceHardnessCV(estimator=LogisticRegression(), n_splits=5, random_state=10), |
| 72 | + InstanceHardnessCV(estimator=LogisticRegression()), |
73 | 73 | ): |
74 | 74 | result = cross_validate( |
75 | 75 | logistic_regression, |
|
83 | 83 |
|
84 | 84 | # %% |
85 | 85 | ax = results.plot.box(vert=False, whis=[0, 100]) |
86 | | -ax.set( |
| 86 | +_ = ax.set( |
87 | 87 | xlabel="Average precision", |
88 | 88 | title="Cross validation scores with different splitters", |
89 | 89 | xlim=(0, 1), |
|
0 commit comments