calculate image color diversity by fractal dimension using box-counting method
- numpy
- opencv
- matplotlib.pyplot
- collections Counter
- scipy.optimize curve_fit
You can use module like this
- image_diversity(image_path, fractal_dimension(default = 5 => 2^5), e_ne_graph(default = false), fractal_graph(default = false))
- ex) image_diversity('./Lenna.png', 5, e_ne_graph=True, fractal_graph=True)
This function will return (Image_diversity, Number of Boxes, Completion_time)
- Image_diversity : The higher value means more diverse image
- ex) image_diversity('./Lenna.png', 5, e_ne_graph=True, fractal_graph=True) - > (1.8258348160993132, [37270, 19535, 6572, 1557, 335, 81], 3.2434229850769043)
return graphs







