@@ -253,21 +253,27 @@ visualizations.
253253
254254#### mcmc_parcoord
255255
256- The parallel coordinates plot ( ` mcmc_parcoord ` ) is probably the first plot to
257- have look at if you have no idea, where the divergences in your model might be
258- coming from. This function works in general without including information about
259- the divergences, but if the optional ` np ` argument is used to pass NUTS
260- parameter information, then divergences will be colored in the plot (by default
261- in red).
256+ The ` mcmc_parcoord ` plot shows one line per iteration, connecting the parameter
257+ values at this iteration. This lets you see global patterns in the divergences.
258+
259+ This function works in general without including information about the
260+ divergences, but if the optional ` np ` argument is used to pass NUTS parameter
261+ information, then divergences will be colored in the plot (by default in red).
262262
263263``` {r, mcmc_parcoord-1}
264264color_scheme_set("darkgray")
265265mcmc_parcoord(posterior_cp, np = np_cp)
266266```
267267
268- The ` mcmc_parcoord ` plot shows one line per iteration, connecting the parameter
269- values at this iteration. This lets you see any global patterns in the
270- divergences. Here, you may notice that divergences in the centered
268+
269+ <!-- ```{r, mcmc_parcoord-1, eval=FALSE} -->
270+ <!-- # not evaluated to reduce vignette size for CRAN -->
271+ <!-- # full version available at mc-stan.org/bayesplot/articles -->
272+ <!-- color_scheme_set("darkgray") -->
273+ <!-- mcmc_parcoord(posterior_cp, np = np_cp) -->
274+ <!-- ``` -->
275+
276+ Here, you may notice that divergences in the centered
271277parameterization happen exclusively when ` tau ` , the hierarchical standard
272278deviation, goes near zero and the values of the ` theta ` s are essentially fixed.
273279This makes ` tau ` immediately suspect.
@@ -289,10 +295,17 @@ Let's look at how `tau` interacts with other variables, using only one of the
289295` theta ` s to keep the plot readable:
290296
291297``` {r, mcmc_pairs}
292- mcmc_pairs(posterior_cp, np = np_cp, pars = c("mu","tau","theta[1]"),
298+ mcmc_pairs(posterior_cp, np = np_cp, pars = c("mu","tau","theta[1]"),
293299 off_diag_args = list(size = 0.75))
294300```
295301
302+ <!-- ```{r, mcmc_pairs, eval=FALSE} -->
303+ <!-- # not evaluated to reduce vignette size for CRAN -->
304+ <!-- # full version available at mc-stan.org/bayesplot/articles -->
305+ <!-- mcmc_pairs(posterior_cp, np = np_cp, pars = c("mu","tau","theta[1]"), -->
306+ <!-- off_diag_args = list(size = 0.75)) -->
307+ <!-- ``` -->
308+
296309Note that each bivariate plot is present twice -- by default each of those
297310contain half of the chains, so you also get to see if the chains produced
298311similar results (see the documentation for the ` condition ` argument for
0 commit comments