@@ -157,59 +157,61 @@ def SRGAN_d(input_images, is_train=True, reuse=False):
157157 b_init = None # tf.constant_initializer(value=0.0)
158158 gamma_init = tf .random_normal_initializer (1. , 0.02 )
159159 df_dim = 64
160- with tf .variable_scope ("SRGAN_d2" , reuse = reuse ):
160+ lrelu = lambda x : tl .act .lrelu (x , 0.2 )
161+ with tf .variable_scope ("SRGAN_d" , reuse = reuse ):
161162 tl .layers .set_name_reuse (reuse )
162- net_in = InputLayer (input_images , name = 'd_input /images' )
163- net_h0 = Conv2d (net_in , df_dim , (4 , 4 ), (2 , 2 ), act = lambda x : tl . act . lrelu ( x , 0.2 ) ,
164- padding = 'SAME' , W_init = w_init , name = 'd_h0/conv2d ' )
163+ net_in = InputLayer (input_images , name = 'input /images' )
164+ net_h0 = Conv2d (net_in , df_dim , (4 , 4 ), (2 , 2 ), act = lrelu ,
165+ padding = 'SAME' , W_init = w_init , name = 'h0/c ' )
165166
166167 net_h1 = Conv2d (net_h0 , df_dim * 2 , (4 , 4 ), (2 , 2 ), act = None ,
167- padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'd_h1/conv2d ' )
168- net_h1 = BatchNormLayer (net_h1 , act = lambda x : tl . act . lrelu ( x , 0.2 ) ,
169- is_train = is_train , gamma_init = gamma_init , name = 'd_h1/batchnorm ' )
168+ padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'h1/c ' )
169+ net_h1 = BatchNormLayer (net_h1 , act = lrelu , is_train = is_train ,
170+ gamma_init = gamma_init , name = 'h1/bn ' )
170171 net_h2 = Conv2d (net_h1 , df_dim * 4 , (4 , 4 ), (2 , 2 ), act = None ,
171- padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'd_h2/conv2d ' )
172- net_h2 = BatchNormLayer (net_h2 , act = lambda x : tl . act . lrelu ( x , 0.2 ) ,
173- is_train = is_train , gamma_init = gamma_init , name = 'd_h2/batchnorm ' )
172+ padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'h2/c ' )
173+ net_h2 = BatchNormLayer (net_h2 , act = lrelu , is_train = is_train ,
174+ gamma_init = gamma_init , name = 'h2/bn ' )
174175 net_h3 = Conv2d (net_h2 , df_dim * 8 , (4 , 4 ), (2 , 2 ), act = None ,
175- padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'd_h3/conv2d ' )
176- net_h3 = BatchNormLayer (net_h3 , act = lambda x : tl . act . lrelu ( x , 0.2 ) ,
177- is_train = is_train , gamma_init = gamma_init , name = 'd_h3/batchnorm ' )
176+ padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'h3/c ' )
177+ net_h3 = BatchNormLayer (net_h3 , act = lrelu , is_train = is_train ,
178+ gamma_init = gamma_init , name = 'h3/bn ' )
178179 net_h4 = Conv2d (net_h3 , df_dim * 16 , (4 , 4 ), (2 , 2 ), act = None ,
179- padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'd_h4/conv2d ' )
180- net_h4 = BatchNormLayer (net_h4 , act = lambda x : tl . act . lrelu ( x , 0.2 ) ,
181- is_train = is_train , gamma_init = gamma_init , name = 'd_h4/batchnorm ' )
180+ padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'h4/c ' )
181+ net_h4 = BatchNormLayer (net_h4 , act = lrelu , is_train = is_train ,
182+ gamma_init = gamma_init , name = 'h4/bn ' )
182183 net_h5 = Conv2d (net_h4 , df_dim * 32 , (4 , 4 ), (2 , 2 ), act = None ,
183- padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'd_h5/conv2d ' )
184- net_h5 = BatchNormLayer (net_h5 , act = lambda x : tl . act . lrelu ( x , 0.2 ) ,
185- is_train = is_train , gamma_init = gamma_init , name = 'd_h5/batchnorm ' )
184+ padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'h5/c ' )
185+ net_h5 = BatchNormLayer (net_h5 , act = lrelu , is_train = is_train ,
186+ gamma_init = gamma_init , name = 'h5/bn ' )
186187 net_h6 = Conv2d (net_h5 , df_dim * 16 , (1 , 1 ), (1 , 1 ), act = None ,
187- padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'd_h6/conv2d ' )
188- net_h6 = BatchNormLayer (net_h6 , act = lambda x : tl . act . lrelu ( x , 0.2 ) ,
189- is_train = is_train , gamma_init = gamma_init , name = 'd_h6/batchnorm ' )
188+ padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'h6/c ' )
189+ net_h6 = BatchNormLayer (net_h6 , act = lrelu , is_train = is_train ,
190+ gamma_init = gamma_init , name = 'h6/bn ' )
190191 net_h7 = Conv2d (net_h6 , df_dim * 8 , (1 , 1 ), (1 , 1 ), act = None ,
191- padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'd_h7/conv2d ' )
192- net_h7 = BatchNormLayer (net_h7 , #act=lambda x: tl.act.lrelu(x, 0.2) ,
193- is_train = is_train , gamma_init = gamma_init , name = 'd_h7/batchnorm ' )
192+ padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'h7/c ' )
193+ net_h7 = BatchNormLayer (net_h7 , is_train = is_train ,
194+ gamma_init = gamma_init , name = 'h7/bn ' )
194195
195196 net = Conv2d (net_h7 , df_dim * 2 , (1 , 1 ), (1 , 1 ), act = None ,
196- padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'd_h8_res/conv2d ' )
197- net = BatchNormLayer (net , act = lambda x : tl . act . lrelu ( x , 0.2 ) ,
198- is_train = is_train , gamma_init = gamma_init , name = 'd_h8_res/batchnorm ' )
197+ padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'res/c ' )
198+ net = BatchNormLayer (net , act = lrelu , is_train = is_train ,
199+ gamma_init = gamma_init , name = 'res/bn ' )
199200 net = Conv2d (net , df_dim * 2 , (3 , 3 ), (1 , 1 ), act = None ,
200- padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'd_h8_res/conv2d2 ' )
201- net = BatchNormLayer (net , act = lambda x : tl . act . lrelu ( x , 0.2 ) ,
202- is_train = is_train , gamma_init = gamma_init , name = 'd_h8_res/batchnorm2 ' )
201+ padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'res/c2 ' )
202+ net = BatchNormLayer (net , act = lrelu , is_train = is_train ,
203+ gamma_init = gamma_init , name = 'res/bn2 ' )
203204 net = Conv2d (net , df_dim * 8 , (3 , 3 ), (1 , 1 ), act = None ,
204- padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'd_h8_res/conv2d3' )
205- net = BatchNormLayer (net , #act=lambda x: tl.act.lrelu(x, 0.2),
206- is_train = is_train , gamma_init = gamma_init , name = 'd_h8_res/batchnorm3' )
207- net_h8 = ElementwiseLayer (layer = [net_h7 , net ], combine_fn = tf .add , name = 'd_h8/add' )
205+ padding = 'SAME' , W_init = w_init , b_init = b_init , name = 'res/c3' )
206+ net = BatchNormLayer (net , is_train = is_train ,
207+ gamma_init = gamma_init , name = 'res/bn3' )
208+ net_h8 = ElementwiseLayer (layer = [net_h7 , net ],
209+ combine_fn = tf .add , name = 'res/add' )
208210 net_h8 .outputs = tl .act .lrelu (net_h8 .outputs , 0.2 )
209211
210- net_ho = FlattenLayer (net_h8 , name = 'd_ho /flatten' )
212+ net_ho = FlattenLayer (net_h8 , name = 'ho /flatten' )
211213 net_ho = DenseLayer (net_ho , n_units = 1 , act = tf .identity ,
212- W_init = w_init , name = 'd_ho /dense' )
214+ W_init = w_init , name = 'ho /dense' )
213215 logits = net_ho .outputs
214216 net_ho .outputs = tf .nn .sigmoid (net_ho .outputs )
215217
0 commit comments