Skip to content

Commit 061703a

Browse files
committed
fix-precommit & mypy
Signed-off-by: daishixun <[email protected]>
1 parent d579989 commit 061703a

File tree

3 files changed

+7
-11
lines changed

3 files changed

+7
-11
lines changed

vllm_ascend/eplb/adaptor/vllm_adaptor.py

Lines changed: 5 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,6 @@ def __init__(self, model, mtp_instance, num_mtp_layers, **args):
6464
]
6565
else:
6666
self.mtp_expert_weight_names = ["w13_weight", "w2_weight"]
67-
6867

6968
self.expert_map_per_layer = dict(
7069
) # reference to expert map on device for expert map update
@@ -79,7 +78,7 @@ def __init__(self, model, mtp_instance, num_mtp_layers, **args):
7978
for mtp_layer_idx in range(self.num_mtp_layers):
8079
self.expert_map_per_layer[self.num_dense_layers + self.num_moe_layers + mtp_layer_idx] = \
8180
self.mtp_instance.model.get_expert_map(self.num_dense_layers + self.num_moe_layers + mtp_layer_idx)
82-
81+
8382
# TODO: here we set number of buffer tensor equal to number of expert in each laryer, which can be improved
8483
num_buffer_tensor = torch.where(
8584
self.expert_map_per_layer[self.num_dense_layers] != -1)[0].numel()
@@ -95,7 +94,7 @@ def __init__(self, model, mtp_instance, num_mtp_layers, **args):
9594
for layer_idx in range(self.num_moe_layers):
9695
self.log2phy_map_per_layer[self.num_dense_layers + layer_idx] = \
9796
self.model.get_log2phy_map(self.num_dense_layers + layer_idx)
98-
97+
9998
if self.mtp_instance is not None:
10099
for mtp_layer_idx in range(self.num_mtp_layers):
101100
self.log2phy_map_per_layer[self.num_dense_layers + self.num_moe_layers + mtp_layer_idx] = \
@@ -127,7 +126,7 @@ def init_expert_param_per_layer(self):
127126
name].data[local_expert_id]
128127
for name in self.expert_weight_names
129128
])
130-
129+
131130
if self.mtp_instance is not None:
132131
mtp_param_dict = dict(self.mtp_instance.named_parameters())
133132
self.expert_param_per_layer[self.num_dense_layers +
@@ -153,8 +152,7 @@ def get_rank_expert_workload(self) -> torch.Tensor:
153152
self.moe_load,
154153
self.mtp_instance.model.get_all_moe_loads().to(
155154
device=self.moe_load.device)
156-
],
157-
dim=0)
155+
], dim=0)
158156
return self.moe_load
159157

160158
def get_init_expert_map(self, num_moe_layers):
@@ -164,8 +162,7 @@ def get_init_expert_map(self, num_moe_layers):
164162
expert_map,
165163
self.mtp_instance.model.get_all_expert_map().to(
166164
device=expert_map.device)
167-
],
168-
dim=0)
165+
], dim=0)
169166
if dist.is_initialized():
170167
world_size = dist.get_world_size()
171168

vllm_ascend/eplb/utils.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -85,8 +85,7 @@ def clear_all_moe_loads(self):
8585
for layer_id in range(self.mtp_start_layer_idx,
8686
self.mtp_start_layer_idx + self.num_mtp_layers):
8787
self.layers[str(layer_id)].mtp_block.mlp.experts.clear_moe_load()
88-
89-
88+
9089

9190
def model_register(model, model_config):
9291
model.get_expert_map = types.MethodType(get_expert_map, model)

vllm_ascend/worker/model_runner_v1.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3169,7 +3169,7 @@ def load_model(self) -> None:
31693169
MtpProposer) and isinstance(
31703170
self.drafter.model, DeepSeekMTP)
31713171
mtp_instance = self.drafter.model
3172-
model_register(mtp_instance.model, self.vllm_config)
3172+
model_register(mtp_instance.model, self.vllm_config)
31733173
if self.drafter.name == SpecDcodeType.EAGLE3:
31743174
self.model.set_aux_hidden_state_layers(
31753175
self.model.get_eagle3_aux_hidden_state_layers())

0 commit comments

Comments
 (0)