|
| 1 | +# Qwen2.5-Omni-7B |
| 2 | + |
| 3 | +## Introduction |
| 4 | + |
| 5 | +Qwen2.5-Omni is an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. |
| 6 | + |
| 7 | +The `Qwen2.5-Omni` model was supported since `vllm-ascend:v0.11.0rc0`. This document will show the main verification steps of the model, including supported features, feature configuration, environment preparation, single-NPU and multi-NPU deployment, accuracy and performance evaluation. |
| 8 | + |
| 9 | +## Supported Features |
| 10 | + |
| 11 | +Refer to [supported features](../user_guide/support_matrix/supported_models.md) to get the model's supported feature matrix. |
| 12 | + |
| 13 | +Refer to [feature guide](../user_guide/feature_guide/index.md) to get the feature's configuration. |
| 14 | + |
| 15 | +## Environment Preparation |
| 16 | + |
| 17 | +### Model Weight |
| 18 | + |
| 19 | +- `Qwen2.5-Omni-3B`(BF16): [Download model weight](https://huggingface.co/Qwen/Qwen2.5-Omni-3B) |
| 20 | +- `Qwen2.5-Omni-7B`(BF16): [Download model weight](https://huggingface.co/Qwen/Qwen2.5-Omni-7B) |
| 21 | + |
| 22 | +Following examples use the 7B version deafultly. |
| 23 | + |
| 24 | +### Installation |
| 25 | + |
| 26 | +You can using our official docker image to run `Qwen2.5-Omni` directly. |
| 27 | + |
| 28 | +Select an image based on your machine type and start the docker image on your node, refer to [using docker](../installation.md#set-up-using-docker). |
| 29 | + |
| 30 | +```{code-block} bash |
| 31 | + :substitutions: |
| 32 | +# Update --device according to your device (Atlas A2: /dev/davinci[0-7] Atlas A3:/dev/davinci[0-15]). |
| 33 | +# Update the vllm-ascend image according to your environment. |
| 34 | +# Note you should download the weight to /root/.cache in advance. |
| 35 | +# Update the vllm-ascend image |
| 36 | +export IMAGE=m.daocloud.io/quay.io/ascend/vllm-ascend:|vllm_ascend_version| |
| 37 | +export NAME=vllm-ascend |
| 38 | +# Run the container using the defined variables |
| 39 | +# Note: If you are running bridge network with docker, please expose available ports for multiple nodes communication in advance |
| 40 | +docker run --rm \ |
| 41 | +--name $NAME \ |
| 42 | +--net=host \ |
| 43 | +--shm-size=1g \ |
| 44 | +--device /dev/davinci0 \ |
| 45 | +--device /dev/davinci1 \ |
| 46 | +--device /dev/davinci2 \ |
| 47 | +--device /dev/davinci3 \ |
| 48 | +--device /dev/davinci4 \ |
| 49 | +--device /dev/davinci5 \ |
| 50 | +--device /dev/davinci6 \ |
| 51 | +--device /dev/davinci7 \ |
| 52 | +--device /dev/davinci_manager \ |
| 53 | +--device /dev/devmm_svm \ |
| 54 | +--device /dev/hisi_hdc \ |
| 55 | +-v /usr/local/dcmi:/usr/local/dcmi \ |
| 56 | +-v /usr/local/Ascend/driver/tools/hccn_tool:/usr/local/Ascend/driver/tools/hccn_tool \ |
| 57 | +-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ |
| 58 | +-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \ |
| 59 | +-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \ |
| 60 | +-v /etc/ascend_install.info:/etc/ascend_install.info \ |
| 61 | +-v /mnt/sfs_turbo/.cache:/root/.cache \ |
| 62 | +-it $IMAGE bash |
| 63 | +``` |
| 64 | + |
| 65 | +## Deployment |
| 66 | + |
| 67 | +### Single-node Deployment |
| 68 | + |
| 69 | +#### Single NPU (Qwen2.5-Omni-7B) |
| 70 | + |
| 71 | +```bash |
| 72 | +export VLLM_USE_MODELSCOPE=true |
| 73 | +export MODEL_PATH=vllm-ascend/Qwen2.5-Omni-7B |
| 74 | +export LOCAL_MEDIA_PATH=/local_path/to_media/ |
| 75 | + |
| 76 | +vllm serve ${MODEL_PATH}\ |
| 77 | +--host 0.0.0.0 \ |
| 78 | +--port 8000 \ |
| 79 | +--served-model-name Qwen-Omni \ |
| 80 | +--allowed-local-media-path ${LOCAL_MEDIA_PATH} \ |
| 81 | +--trust-remote-code \ |
| 82 | +--compilation-config {"full_cuda_graph": 1} \ |
| 83 | +--no-enable-prefix-caching |
| 84 | +``` |
| 85 | + |
| 86 | +:::{note} |
| 87 | +Now vllm-ascend docker image should contain vllm[audio] build part, if you encounter *audio not supported issue* by any chance, please re-build vllm with [audio] flag. |
| 88 | + |
| 89 | +```bash |
| 90 | +VLLM_TARGET_DEVICE=empty pip install -v ".[audio]" |
| 91 | +``` |
| 92 | + |
| 93 | +::: |
| 94 | + |
| 95 | +`--allowed-local-media-path` is optional, only set it if you need infer model with local media file |
| 96 | + |
| 97 | +`--gpu-memory-utilization` should not be set manually only if yous know what this parameter aims to. |
| 98 | + |
| 99 | +#### Multiple NPU (Qwen2.5-Omni-7B) |
| 100 | + |
| 101 | +```bash |
| 102 | +export VLLM_USE_MODELSCOPE=true |
| 103 | +export MODEL_PATH=vllm-ascend/Qwen2.5-Omni-7B |
| 104 | +export LOCAL_MEDIA_PATH=/local_path/to_media/ |
| 105 | +export DP_SIZE=8 |
| 106 | + |
| 107 | +vllm serve ${MODEL_PATH}\ |
| 108 | +--host 0.0.0.0 \ |
| 109 | +--port 8000 \ |
| 110 | +--served-model-name Qwen-Omni \ |
| 111 | +--allowed-local-media-path ${LOCAL_MEDIA_PATH} \ |
| 112 | +--trust-remote-code \ |
| 113 | +--compilation-config {"full_cuda_graph": 1} \ |
| 114 | +--data-parallel-size ${DP_SIZE} \ |
| 115 | +--no-enable-prefix-caching |
| 116 | +``` |
| 117 | + |
| 118 | +`--tensor_parallel_size` no need to set for this 7B model, but if you really need tensor parallel, tp size can be one of `1\2\4` |
| 119 | + |
| 120 | +### Prefill-Decode Disaggregation |
| 121 | + |
| 122 | +Not supported yet |
| 123 | + |
| 124 | +## Functional Verification |
| 125 | + |
| 126 | +If your service start successfully, you can see the info shown below: |
| 127 | + |
| 128 | +```bash |
| 129 | +INFO: Started server process [2736] |
| 130 | +INFO: Waiting for application startup. |
| 131 | +INFO: Application startup complete. |
| 132 | +``` |
| 133 | + |
| 134 | +Once your server is started, you can query the model with input prompts: |
| 135 | + |
| 136 | +```bash |
| 137 | +curl http://127.0.0.1:8000/v1/chat/completions -H "Content-Type: application/json" -H "Authorization: Bearer EMPTY" -d '{ |
| 138 | + "model": "Qwen-Omni", |
| 139 | + "messages": [ |
| 140 | + { |
| 141 | + "role": "user", |
| 142 | + "content": [ |
| 143 | + { |
| 144 | + "type": "text", |
| 145 | + "text": "What is the text in the illustrate?" |
| 146 | + }, |
| 147 | + { |
| 148 | + "type": "image_url", |
| 149 | + "image_url": { |
| 150 | + "url": "https://modelscope.oss-cn-beijing.aliyuncs.com/resource/qwen.png" |
| 151 | + } |
| 152 | + } |
| 153 | + ] |
| 154 | + } |
| 155 | + ], |
| 156 | + "max_tokens": 100, |
| 157 | + "temperature": 0.7 |
| 158 | + }' |
| 159 | + |
| 160 | +``` |
| 161 | + |
| 162 | +If you query the server successfully, you can see the info shown below (client): |
| 163 | + |
| 164 | +```bash |
| 165 | +{"id":"chatcmpl-a70a719c12f7445c8204390a8d0d8c97","object":"chat.completion","created":1764056861,"model":"Qwen-Omni","choices":[{"index":0,"message":{"role":"assistant","content":"The text in the illustration is \"TONGYI Qwen\".","refusal":null,"annotations":null,"audio":null,"function_call":null,"tool_calls":[],"reasoning_content":null},"logprobs":null,"finish_reason":"stop","stop_reason":null,"token_ids":null}],"service_tier":null,"system_fingerprint":null,"usage":{"prompt_tokens":73,"total_tokens":88,"completion_tokens":15,"prompt_tokens_details":null},"prompt_logprobs":null,"prompt_token_ids":null,"kv_transfer_params":null} |
| 166 | +``` |
| 167 | + |
| 168 | +## Accuracy Evaluation |
| 169 | + |
| 170 | +Qwen2.5-Omni on vllm-ascend has been test on AISBench. |
| 171 | + |
| 172 | +### Using AISBench |
| 173 | + |
| 174 | +1. Refer to [Using AISBench](../developer_guide/evaluation/using_ais_bench.md) for details. |
| 175 | + |
| 176 | +2. After execution, you can get the result, here is the result of `Qwen2.5-Omni-7B` with `vllm-ascend:0.11.0rc0` for reference only. |
| 177 | + |
| 178 | +| dataset | platform | metric | mode | vllm-api-stream-chat | |
| 179 | +|----- | ----- | ----- | ----- | -----| |
| 180 | +| textVQA | A2 | accuracy | gen_base64 | 83.47 | |
| 181 | +| textVQA | A3 | accuracy | gen_base64 | 84.04 | |
| 182 | + |
| 183 | +## Performance Evaluation |
| 184 | + |
| 185 | +### Using AISBench |
| 186 | + |
| 187 | +Refer to [Using AISBench for performance evaluation](../developer_guide/evaluation/using_ais_bench.md#execute-performance-evaluation) for details. |
| 188 | + |
| 189 | +### Using vLLM Benchmark |
| 190 | + |
| 191 | +Run performance evaluation of `Qwen2.5-Omni-7B` as an example. |
| 192 | + |
| 193 | +Refer to [vllm benchmark](https://docs.vllm.ai/en/latest/contributing/benchmarks.html) for more details. |
| 194 | + |
| 195 | +There are three `vllm bench` subcommand: |
| 196 | +- `latency`: Benchmark the latency of a single batch of requests. |
| 197 | +- `serve`: Benchmark the online serving throughput. |
| 198 | +- `throughput`: Benchmark offline inference throughput. |
| 199 | + |
| 200 | +Take the `serve` as an example. Run the code as follows. |
| 201 | + |
| 202 | +```shell |
| 203 | +vllm bench serve --model vllm-ascend/Qwen2.5-Omni-7B --dataset-name random --random-input 1024 --num-prompt 200 --request-rate 1 --save-result --result-dir ./ |
| 204 | +``` |
| 205 | + |
| 206 | +After about several minutes, you can get the performance evaluation result. |
0 commit comments