Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
193 changes: 193 additions & 0 deletions Linear regression .ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"#importing datasets from scikit learn\n",
"from sklearn import datasets , linear_model"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"#load the dataset\n",
"house_price = [245, 312, 279, 308, 199, 219, 405, 325, 319, 255]\n",
"size = [1400, 1600, 1700, 1875, 1100, 1550, 2350, 2450, 1425, 1700]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"#reshape the input to your regression\n",
"# -1 means create a arrray and 1 means each having 1 element. all elements in size2 are [[1400][1600] ..] \n",
"size2 = np.array(size).reshape((-1,1))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"#linear regression classifier\n",
"regr = linear_model.LinearRegression()\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#fit module used to fit data frequently and quickly\n",
"regr.fit(size2, house_price)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"coefficient : \n",
" [0.11023544]\n",
"intercept : \n",
" 97.54621380846325\n"
]
}
],
"source": [
"#printing coefficient and intercept\n",
"\n",
"print(\"coefficient : \\n\", regr.coef_ )\n",
"print(\"intercept : \\n\", regr.intercept_)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"by formula [251.87583519]\n",
"[251.87583519]\n"
]
}
],
"source": [
"# checking prediction by formula a + b(size) = price\n",
"size_new = 1400\n",
"price = regr.coef_ * size_new + regr.intercept_\n",
"print(\"by formula \", price)\n",
"# By inbuilt function predict\n",
"print(regr.predict([[size_new]]))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"#Formula obtained for the trained model\n",
"def graph(formula, x_range):\n",
" # x_range array converted to np array\n",
" x = np.array(x_range)\n",
" # formula is evaluated as y\n",
" y = eval(formula)\n",
" #plotting graph\n",
" plt.plot(x, y)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEKCAYAAADjDHn2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd8lfXd//HXJ4EAYW9ZyWFDHAyD27qrKI5aZ+O2TYfet1ZvW9vcagXTqnXVLdZV77S2av0pCCqguEXBTcIIkIS9dyDz8/vjXNiAIQNyRpL38/E4j1zne67rnHeOl/lwXd/r+n7N3REREalJQqwDiIhI/FOxEBGRWqlYiIhIrVQsRESkVioWIiJSKxULERGplYqFiIjUSsVCRERqpWIhIiK1ahHrAPujW7duHgqFYh1DRKRRmTNnzjp3716fbRp1sQiFQsyePTvWMUREGhUzK6zvNjoNJSIitVKxEBGRWqlYiIhIrVQsRESkVioWIiJSKxULERGplYqFiIjUSsVCRERqpWIhIo1OTk4OoVCIhIQEQqEQOTk5sY7U5DXqO7hFpPnJyckhMzOT4uJiAAoLC8nMzAQgIyMjltGaNB1ZiEijkpWV9V2h2KW4uJisrKwYJWoeVCxEpFEpKiqqV7s0jIgXCzNLNLMvzGxy8Ly/mc0ys4Vm9k8zSwraWwXP84PXQ5HOJiKNT0pKSr3apWFE48jiOiCvyvO7gPvdfTCwEbg6aL8a2Ojug4D7g/VERHaTnZ1NcnLybm3JyclkZ2fHKFHzENFiYWZ9gTOAvwbPDTgReClY5TngnGD57OA5wesnBeuLiHwnIyODiRMnkpqaipmRmprKxIkT1bkdYZG+GuoB4DdA++B5V2CTu5cHz5cBfYLlPsBSAHcvN7PNwfrrIpxRRBqZjIwMFYcoi9iRhZmNA9a4+5yqzdWs6nV4rer7ZprZbDObvXbt2gZIKiIitYnkaaijgbPMrAB4gfDppweATma264imL7AiWF4G9AMIXu8IbNjzTd19orunu3t69+71mhVQRET2UcSKhbv/zt37unsIuAh4290zgHeA84LVLgdeDZZfC54TvP62u3/vyEJERKIvFvdZ/Ba4wczyCfdJPBW0PwV0DdpvAG6OQTYRkbi2dWcZf5qSx4f50e3OjcpwH+4+E5gZLC8GDqtmnZ3A+dHIIyLS2FRUOi/OXso9b81n/fZS2rZqwdGDukXt8zU2lIhInJu1eD3jJ+cyd8UW0lM78/QVYzikb6eoZlCxEBGJU0s3FPOnqXlM+WYVvTu25sGLR3HmIb2IxS1oKhYiInFme0k5j81cxMT3F5Ng8OuTh5D5gwG0SUqMWSYVCxGROFFZ6bzyxXLuemMea7aWcM7I3vx27DB6dWwT62gqFiIi8WBO4UbGT87lq6WbGNGvE49feiijUzrHOtZ3VCxERGJo5eYd3Dl1Hq9+uYIe7Vtx7/kj+NGoPiQkxNfQeCoWIiIxsKO0gifeW8Tj7y6i0uHaEwbxy+MH0rZVfP5Zjs9UIiJNlLsz6euV3DkljxWbd3LGwb24eeww+nVJrn3jGFKxEBGJkq+XbWL8pFxmF27kwN4duP/CkRw+oGusY9WJioWISISt2bKTu9+cz0tzltGtXRJ3/fhgzju0H4lx1i9RExULEZEI2VlWwVMfLOHRd/Iprajk58cN4NoTBtG+dctYR6s3FQsRkQbm7rzx7Sr+ODWPpRt2cEpaT7JOH06oW9tYR9tnKhYiIg1o7orNTJicyyeLNzC0Z3tyfnp4VAf8ixQVCxGRBrBuWwn3vrWAFz4rolOblkw45yAuHtOPFomxmAmi4alYiIjsh9LySp77qIAHZyxkR1kFVx7Vn+tOGkzH5MbXL1ETFQsRkX3g7szIW0P2lDyWrNvOCUO7k3VGGoN6tIt1tIhQsRARqacFq7cyYXIu7y9cx8DubXnmyjGcMLRHrGNFlIqFiEgdbdxeyv3TF5Azq4i2SYncOi6NS49MpWUT6ZeoiYqFiEgtyioqyfmkkPunL2TrzjIyDk/l16cMoUvbpFhHixoVCxGRGry7YC0TJueSv2Ybxwzqxi3j0hh6QPtYx4o6FQsRkWosWruN7NfzeHveGkJdk3nysnROHt4jJlOaxgMVCxGRKjbvKOPBGQt57qMC2rRM5PenD+Pyo0K0ahG7KU3jgYqFiAhQUen849Mi7pu2gI3FpVyY3o8bfziU7u1bxTpaXFCxEJFm76P8dYyfnMu8VVs5rH8Xbh2XxkF9OsY6VlxRsRCRZqtofTHZU3J5c+5q+nZuw6MZoxl70AHNtl+iJioWItLsbCsp5+G383n6gyW0SDRuOnUoVx/Tn9Ytm3e/RE1ULESk2aisdF6as4y735zPum0l/Hh0X35z2lB6dmgd62hxT8VCRJqFzwo2cPukuXy7fAujUzrx18vTGdmvU6xjNRoqFiLSpC3bWMyfps7j9a9X0qtja/5y0UjOGtFb/RL1pGIhIk1ScWk5j89cxBPvLcYMrjtpMD8/bgDJSfqzty/0rYlIk1JZ6bz61XLumjqfVVt2ctaI3tw8dhi9O7WJdbRGTcVCRJqML4o2cvukXL5cuolD+nbkkYxRHJraJdaxmgQVCxFp9FZt3sldb8zjlS+W06N9K+45fwTnjupDQoL6JRqKioWINFo7yyqY+N5iHpu5iAp3rjlhIL86fhBtW+lPW0PTNyoijY67M/nrldw5dR7LN+1g7EEH8PvTh9OvS3KsozVZKhYi0qh8s2wz4yfP5bOCjQzv1YF7LxjBEQO6xjpWk6diISKNwpqtO7nnzfm8OGcZXZKT+NO5B3NBej8S1S8RFSoWIhLXSsorePqDAh55J5+S8gp+duwArj1xEB1at4x1tGYlYsXCzFoD7wGtgs95yd1vM7NngeOAzcGqV7j7lxa+nfIvwOlAcdD+eaTyiUh8c3fenLuaP07Jo2hDMScP70nWGcPp361trKM1S5E8sigBTnT3bWbWEvjAzKYGr93k7i/tsf5YYHDwOBx4LPgpIs1M3sotjJ+Uy8eL1zOkZzuev/owjh3cPdaxmrWIFQt3d2Bb8LRl8PAaNjkb+Fuw3Sdm1snMern7ykhlFJH4sn5bCfdOW8ALnxbRoU1Lxp99ID85LIUWiQmxjtbsRbTPwswSgTnAIOARd59lZr8Ess3sVmAGcLO7lwB9gKVVNl8WtK3c4z0zgUyAlJSUSMYXkSgpLa/kbx8X8JcZCykureCyI0Ncf/JgOiUnxTqaBCJaLNy9AhhpZp2AV8zsIOB3wCogCZgI/BYYD1R3ScP3jkTcfWKwHenp6TUdqYhInHN33pm/hjsm57F43XaOG9KdW8YNZ1CP9rGOJnuIytVQ7r7JzGYCp7n7PUFziZk9A/xP8HwZ0K/KZn2BFdHIJyLRt3D1Via8nsd7C9YyoHtbnrliDCcM6xHrWLIXkbwaqjtQFhSKNsDJwF27+iGCq5/OAb4NNnkNuNbMXiDcsb1Z/RUiTc+m4lIemL6Q5z8pJDkpkVvGpXHpEakktVC/RDyL5JFFL+C5oN8iAfiXu082s7eDQmLAl8AvgvWnEL5sNp/wpbNXRjCbiERZeUUlObOKuH/6ArbsKOPiw1K44ZQhdG3XKtbRpA4ieTXU18CoatpP3Mv6DlwTqTwiEjvvL1zL+Em5LFyzjaMGduWWcWkM79Uh1rGkHnQHt4hEzJJ128l+PZfpeWtI6ZLME5ceyg/TempK00ZIxUJEGtyWnWU8NGMhz35UQKsWidw8dhhXHh2iVYvEWEeTfaRiISINpqLS+ednS7n3rflsKC7lgkP7ceOpQ+jRvnWso8l+UrEQkQbx8aL1jJ+cS97KLYwJdea5Mw/joD4dYx1LGoiKhYjsl6L1xfxxSh5vzF1Fn05tePgnozjj4F7ql2hiVCxEZJ9sKynn0Xfy+ev7S0hMMG48ZQg/+8EAWrdUv0RTpGIhIvVSWem8/Pky7n5zPmu3lnDuqD785rRhHNBR/RJNmYqFiNTZ7IINjJ+cy9fLNjMqpRMTLz2UUSmdYx1LokDFQkRqtXzTDu6cOo9JX63ggA6teeDCkZw1ojcJmtK02VCxEJG9Ki4t5/F3FzPxvUW4w3+fOIhfHD+Q5CT96Whu9F9cRL7H3Xn1yxXc9cY8Vm7eybhDenHz2GH07Zwc62gSI3UqFmZ2DDDY3Z8JBgFs5+5LIhtNRGLhq6WbuH3SXD4v2sTBfTry4MWjGBPqEutYEmO1Fgszuw1IB4YCzxCeHvX/gKMjG01Eomn1lp3c9cY8/v35crq1a8Xd5x3CeaP7ql9CgLodWfyI8OixnwO4+woz0zRWIk3EzrIK/vr+Yh6duYjyCueXxw/kmhMG0a6VzlLLf9Rlbyh1dzczBzCzthHOJCJR4O5M+WYVf5ySx/JNOzj1wJ5knZ5GSlf1S8j31WVqqn+Z2RNAJzP7GTAdeDKysUQkkr5dvpkLJ37CNX//nPatW/D3nx3OE5emN7tCkZOTQygUIiEhgVAoRE5OTqwjxa1ajyzc/R4zOwXYQrjf4lZ3nxbxZCLS4NZuLeHet+bzz9lL6ZycRPaPDuKiMSkkNsN+iZycHDIzMykuLgagsLCQzMxMADIyMmIZLS5ZeIK6GlYw6w+sdPedwfM2QE93L4h8vJqlp6f77NmzYx1DJO6VlFfw7IcFPPR2PjvLKrjiqBD/ddJgOrZpGetoMRMKhSgsLPxee2pqKgUFBdEPFEVmNsfd0+uzTV36LF4EjqryvCJoG1OfDxKR6HN3puWuJntKHoXrizlpWA+yzhjOgO7tYh0t5oqKiurV3tzVpVi0cPfSXU/cvdTMkiKYSUQawPxVWxk/eS4f5q9nUI92PHfVYRw3pHusY8WNlJSUao8sUlJSYpAm/tWlg3utmZ2164mZnQ2si1wkiTfqBGxcNmwv5X//3zeM/ct7fLt8C384M42p1x2rQrGH7OxskpN379BPTk4mOzs7RoniW12OLH4B5JjZw4ABS4HLIppK4oY6ARuPsopKnv+4kAemL2B7aQWXHpHK9ScPoXNbnQiozq79Nysri6KiIlJSUsjOztZ+vRe1dnB/t6JZu2D9rZGNVHfq4I685twJ2Ji8M38Nd0zOZdHa7Rw7uBu3jEtjSE/dOyvVa9AObjO7xN3/z8xu2KMdAHe/b59SSqOiTsD4lr9mG3e8nsvM+Wvp360tT12ezonDemhKU2lwNZ2G2nWntv550oypEzA+bS4u44EZC3j+40LatEzkf88YzmVHhkhqUZduSJH622uxcPcnzCwR2OLu90cxk8SR7Ozs3fosQJ2AsVReUck/Pi3ivmkL2LyjjAvHpHDjD4fQrV2rWEeTJq7GDm53rwiuhFKxaKbUCRg/Pli4jgmTc5m/eitHDOjCreMOJK13h1jHkmaiLsesH5nZw2Z2rJmN3vWIeDKJGxkZGRQUFFBZWUlBQUFUC4Uu24WCddv56XOzueSpWRSXlfP4JaP5x8+OUKGQqKrLpbO77t4eX6XNgRMbPo7IfzT3y3a37izj4bfzefrDJSQlJvCb04Zy1dH9ad0yMdbRpBmq86Wz8UiXzjZtzfWy3YpK58XZS7nnrfms317KeaP7ctOpQ+nRoXWso0kTsS+Xzu71NJSZHW5mX5nZNjP72MyG739EkbprKpft1udU2qzF6znzoQ+4+d/fEOralteuOYY/nz9ChUJirqbTUI8A/wO8B5wFPACcGo1QItA0Ltut66m0pRuK+dPUPKZ8s4reHVvz0MWjGHdIL90vIXGjpg7uBHef5u4l7v4ioIFlJKqawtg9WVlZu112DFBcXExWVhYA20vK+fOb8zjpvnd5Z95afn3yEGbceDxnjuitQiFxpaYji05mdu7enrv7vyMXS6RpXLa791NpS3lpzjLufmMea7aWcM7I3vx27DB6dWwT5YQidbPXDm4ze6aG7dzdr4pMpLpTB7fEu+o66ZN6D6PX6ddC1xAj+nXitjPTGJ3SOUYJpTlq0LGh3P3K/Y8k0rxVvQM+sX03Oh93BW0PPJ72LSq5/dwRnDOyDwnNcEpTaXzqcp+FiOyjjIwMSivh9hc+pHLYySSYcXz3nTxy7dm0baX//aTxiNjeamatCV9J1Sr4nJfc/bZgTu8XgC7A58Clwex7rYC/AYcC64EL42Geb5F95e689tUKnlx2ABx8Bmce3Iubxw6jX5fk2jcWiTOR/KdNCXCiu28zs5bAB2Y2FbgBuN/dXzCzx4GrgceCnxvdfZCZXQTcBVwYwXwiEfP1sk3cPimXOYUbObB3B+6/cCSHD+ga61gi+6zWYmFmycCNQIq7/8zMBgND3X1yTdt5uOd8W/C0ZfDYNUzIT4L254A/EC4WZwfLAC8BD5uZeWO+xVyanTVbdnL3m/N5ac4yurVL4q4fH8x5h/YjUf0S0sjV5cjiGWAOcGTwfBnwIlBjsQAIhjifAwwifJPfImCTu5dXea8+wXIfwlO24u7lZrYZ6Irm+5ZGYGdZBU99sIRH38mnrML5+XEDuPaEQbRv3TLW0UQaRF2KxUB3v9DMLgZw9x1Wx7uF3L0CGGlmnYBXgOqGDNl15FDde37vqMLMMoFMaFx38krT5O688e0q/jg1j6UbdvDDtJ5knTGc1K5ta99YpBGpS7EoNbM2BH+4zWwg4f6IOnP3TWY2EziC8M19LYKji77AimC1ZUA/YJmZtQA6Ahuqea+JwEQI32dRnxwiDWnuis2Mn5TLrCUbGNqzPTk/PZyjB3WLdSyRiKhLsbgNeAPoZ2Y5wNHAFbVtZGbdgbKgULQBTibcaf0OcB7hK6IuB14NNnkteP5x8Prb6q+QeLRuWwn3vjWfFz5bSqc2LZlwzkFcPKYfLRI1pak0XbUWC3efZmafEz4qMOA6d69LP0Iv4Lmg3yIB+Je7TzazXOAFM7sD+AJ4Klj/KeB5M8snfERxUf1/HZHIKS2v5LmPCnhwxkJ2lFVw5VH9ue6kwXRMVr+ENH11uRrqaOBLd3/dzC4Bfm9mf3H37w8HWoW7fw2MqqZ9MXBYNe07gfPrnFwkStydGXlryJ6Sx5J12zlhaHeyzkhjUI92sY4mEjV1OQ31GDDCzEYANwFPE7557rhIBhOJBwtWb2XC5FzeX7iOgd3b8uyVYzh+aI9YxxKJuroUi3J3dzM7G3jQ3Z8ys8sjHUwkljZuL+X+6QvImVVE26REbjszjUuOSKWl+iWkmapLsdhqZr8DLgF+EPRB6CStNEllFZX83yeFPDB9IVt3lpFxeCq/PmUIXdomxTqaSEzVpVhcSPiO66vdfZWZpQB/jmwskeibOX8Nd7yeR/6abRwzqBu3jEtj6AHtYx1LJC7U5WqoVcB9VZ4XEe6zEGkSFq3dRvbrebw9bw2hrsk8eVk6Jw/voZnqRKqoy9VQW/nPndRJhE9BbXP3jpEMJhJpm3eU8eCMhTz3UQFtWiby+9OHcflRIVq1SIx1NJG4U5cji92Ow83sHKq59FWksaiodP7xaRH3TVvAxuJSLhrTjxtOGUr39q1iHU0kbtV7iHJ3/39mdnMkwohE2kf56xg/OZd5q7ZyWP8u3DoujYP66CBZpDZ1OQ11bpWnCUA61QzwJxLPCtdvJ/v1PN7KXU3fzm14NGM0Yw86QP0SInVUlyOLM6sslwMFhOeeEIl7W3eW8cg7i3j6gyW0SDRuOnUoVx/Tn9Yt1S8hUh916bO4MhpBRBpSZaXz0pxl3P3mfNZtK+HHo/vym9OG0rND61hHE2mU6nIaqi/wEOHRZh34gPBggssinE1kn3y6ZAPjJ8/l2+VbGJ3SiacuT2dEv06xjiXSqNVl7IJnCA8f3pvwbHaTgjaRuLJsYzHX/P1zLnjiY9ZvK+UvF43k5V8exYh+ncjJySEUCpGQkEAoFCInJyfWcUUalbr0WXR396rF4Vkzuz5SgUTqq7i0nMdmLmLie4sxg+tOGswvjhtIm6Rwv0ROTg6ZmZkUFxcDUFhYSGZmJgAZGRkxyy3SmFht8wuZ2XTgWeAfQdPFwJXuflJko9UuPT3dZ8+eHesYEiOVlc6rXy3nzqnzWL2lhLNG9ObmscPo3anNbuuFQiEKC78/on5qaioFBQVRSisSP8xsjrun12ebuhxZXAU8DNxPuM/io6BNJGa+KNrI7ZNy+XLpJg7p25FHM0ZzaGqXatctKiqqV7uIfF9droYqAs6KQhaRWq3avJO73pjHK18sp0f7Vtxz/gjOHdWHhIS93y+RkpJS7ZFFSkpKJKOKNCl7LRZm9hA13Hzn7v8dkUQi1dhZVsHE9xbz2MxFVLhzzQkD+dXxg2jbqvaD4+zs7N36LACSk5PJzs6OZGSRJqWm/9OqdgbcDtwW4Swi3+PuTP56JXdOncfyTTsYe9AB/P704fTrklzn99jViZ2VlUVRUREpKSlkZ2erc1ukHmrt4AYwsy/c/XvzaceaOribtm+WbWb85Ll8VrCR4b06cNuZaRwxoGusY4k0epHq4AaNBSVRtGbrTu55cz4vzllGl+Qk/nTuwVyQ3o/EGvolRCSy6j3qrEiklJRX8PQHBTzyTj4l5RX87NgBXHviIDq01iy+IrFWUwd31UmPks1sy66XAHf3DpEOJ82Du/Pm3NX8cUoeRRuKOXl4T7LOGE7/bm1jHU1EAnstFntOeiQSCXkrtzB+Ui4fL17PkJ7teP7qwzh2cPdYxxKRPeg0lMTE+m0l3DttAS98WkSHNi2ZcPaBXHxYCi0S6zJcmYhEm4qFRFVpeSV/+7iAv8xYSHFpBZcdGeL6kwfTKTkp1tFEpAYqFhIV7s7b89aQ/Xoei9dt57gh3bll3HAG9dDZTpHGQMVCIm7h6q1MeD2P9xasZUD3tjxzxRhOGNYj1rFEpB5ULCRiNhWX8sD0hTz/SSHJSYncMi6Ny45MpaX6JUQaHRULaXDlFZXkzCri/ukL2LKjjJ8cnsINpwylS1v1S4g0VioW0qDeW7CWCZNzWbhmG0cN7MqtZ6Yx7ADdkiPS2KlYSINYvHYb2a/nMWPeGlK7JvPEpYfyw7SemGmIDpGmQMVC9svmHWU8/PZCnv2ogFYtErl57DCuPDpEqxaJsY4mIg1IxUL2SUWl88/PlnLvW/PZUFzKBYf248ZTh9CjfetYRxORCNBlKVJvHy9az7iHPuD3r3zDwO7tmHTtMdx13iFxXShycnIIhUIkJCQQCoXIycmJdSSRRkVHFlJnReuL+eOUPN6Yu4o+ndrwyE9Gc/rBB8R9v0ROTs5uM+UVFhaSmZkJoAmQROqoTpMfxStNfhQd20rKeeSdfJ56fwmJCcavjh/Iz34wgNYtG0e/RCgUqnYO7tTUVAoKCqIfSCTGIjn5kTRDlZXOy58v4+4357N2awnnjurDb04bxgEd4/d0U3WKiorq1S4i3xexPgsz62dm75hZnpnNNbPrgvY/mNlyM/syeJxeZZvfmVm+mc03s1MjlU1qN7tgA+c8+iE3vfQ1fTu34ZVfHcV9F45sdIUCICUlpV7tIvJ9kTyyKAdudPfPzaw9MMfMpgWv3e/u91Rd2czSgIuAA4HewHQzG+LuFRHMKHtYvmkHd06dx6SvVnBAh9Y8cOFIzhrRm4RGPKVpdnb2bn0WAMnJyWRnZ8cwlUjjErFi4e4rgZXB8lYzywP61LDJ2cAL7l4CLDGzfOAw4ONIZZT/KC4t5/F3FzPxvUW4w3+fNJhfHDeA5KTGf6ZyVyd2VlYWRUVFpKSkkJ2drc5tkXqIyl8CMwsBo4BZwNHAtWZ2GTCb8NHHRsKF5JMqmy2j5uIiDcDdefXLFdw5dR6rtuxk3CG9uHnsMPp2To51tAaVkZGh4iCyHyJeLMysHfAycL27bzGzx4AJhOf3ngDcC1xFeG7vPX3vUi0zywQyQeec99eXSzdx+6S5fFG0iYP7dOShn4xiTKhLrGOJSByK6E15ZtaScKHIcfd/A7j7anevcPdK4EnCp5ogfCTRr8rmfYEVe76nu09093R3T+/eXXM174vVW3Zyw7++5JxHPmTZxh3cfd4hvHrN0YwJddHNayJSrYgdWVj4Tq2ngDx3v69Ke6+gPwPgR8C3wfJrwN/N7D7CHdyDgU8jla852llWwV/fX8yjMxdRXuH88viBXHPCINq1Cu8GunlNRPYmYjflmdkxwPvAN0Bl0Px74GJgJOFTTAXAz3cVDzPLInxKqpzwaaupNX2GbsqrG3dnyjer+OOUPJZv2sFpBx7A708fTkrX3fsldPOaSPOwLzfl6Q7uJu7b5ZsZPzmXT5dsYNgB7bn1zDSOGtit2nUTEhKobn8wMyorK6vZQkQaI93BLd9Zu7WEe96cz7/mLKVzchLZPzqIi8akkFjD/RIpKSnVHlnoQgIRUbFoYkrKK3j2wwIeejufnWUVXH10f/7rpMF0bNOy1m1185qI7I2KRRPh7kzLXU32lDwK1xdz0rAeZJ0xnAHd29X5PXTzmojsjfosmoB5q7YwYXIuH+avZ3CPdtwyLo0fDNFlxSJSPfVZNDMbtpdy37T5/H1WEe1bt+T2sw7kJ4en0DJRc1qJSMNSsWiEyioq+dvHhfxl+gK2l1Zw6RGpXH/yEDq3TYp1NBFpolQsGpl35q9hwuRcFq/dzrGDu3HLuDSG9Gwf61gi0sSpWDQS+Wu2ccfrucycv5b+3dry1OXpnDisR9xPaSoiTYOKRZzbXFzGAzMW8PzHhbRJSuR/zxjOZUeGSGqhfgkRiR4VizhVXlHJPz4t4r5pC9i8o4yLDkvhxlOG0LVdq1hHE5FmSMUiDn2wcB0TJucyf/VWjhjQhVvHHUha7w6xjiUizZiKRRwpWLedO17PY3reavp1acPjl4zm1AMPUL+EiMScikUc2LqzjIffzufpD5eQlJjAb04bylVH96d1y8RYRxMRAVQsYqqi0nlx9lLueWs+67eXct7ovtx06lB6dGgd62giIrtRsYiRWYvXc/ukXHJXbiE9tTPPXHEYB/ftGOtYIiLVUrGIsqUbivnT1DymfLOK3h1b89DFoxh3SC/1S4hIXFOxiJLtJeU8OjOfJ99fQqIZvz55CJk/GECbJPVLiEj8U7GIsMpK599fLOfuN+axZmsJ54zszW8VS7XjAAAMl0lEQVTHDqNXxzaxjiYiUmcqFhE0p3AD4yfl8tWyzYzo14nHLz2U0SmdYx1LRKTeVCwiYMWmHdz1xjxe/XIFPTu04r4LRnDOyD4k1DClqYhIPFOxaEA7Sit44r1FPP7uItzhv04cxC+OG0jbVvqaRaRx02h0DcDdefXL5Zx070wemL6Qk4b3ZMaNx3HjD4eqUNQgJyeHUChEQkICoVCInJycWEcSkb3QX7L99NXSTYyfnMucwo0c2LsDD1w0isP6d4l1rLiXk5NDZmYmxcXFABQWFpKZmQmgOb9F4pDm4N5Ha7bs5K435vPy58vo1i6Jm04dynmH9iNR/RJ1EgqFKCws/F57amoqBQUF0Q8k0oxoDu4o2FlWwVMfLOGRd/Ipr3B+ftwArj1hEO1bt4x1tEalqKioXu0iElsqFnXk7rzx7Sqyp+SxbOMOfpjWk6wzhpPatW2sozVKKSkp1R5ZpKSkxCCNiNRGHdx1MHfFZi6a+Am/zPmcdq1a8PefHs7Ey9JVKPZDdnY2ycnJu7UlJyeTnZ0do0QiUhMdWdRg3bYS7n1rPi98tpRObVpyxzkHcdGYfrRIVI3dX7s6sbOysigqKiIlJYXs7Gx1bovEKXVwV6O0vJJnP1rCQzPy2VFWwWVHhrjupMF0TFa/hIg0furg3k/uzoy8Ndzxei4F64s5YWh3ss5IY1CPdrGOJiISUyoWgQWrtzJhci7vL1zHwO5tefbKMRw/tEesY4mIxIVmXyw2bi/l/ukLyJlVRNukRG47M41LjkilpfolRES+02yLRVlFJf/3SSEPTF/I1p1lXHJEKr8+eQid2ybFOpqISNxplsViTuEGfvvyN+Sv2cYxg7pxy7g0hh7QPtaxRETiVrMsFi0SEqisdJ68LJ2Th/fQlKYiIrVolsViRL9OTLvhOI3jJCJSR822F1eFQkSk7pptsRARkbqLWLEws35m9o6Z5ZnZXDO7LmjvYmbTzGxh8LNz0G5m9qCZ5ZvZ12Y2OlLZRESkfiJ5ZFEO3Ojuw4EjgGvMLA24GZjh7oOBGcFzgLHA4OCRCTwWwWz7TbO8iUhzErFi4e4r3f3zYHkrkAf0Ac4GngtWew44J1g+G/ibh30CdDKzXpHKtz92zfJWWFiIu383y5sKhog0VVHpszCzEDAKmAX0dPeVEC4owK4xNfoAS6tstixo2/O9Ms1stpnNXrt2bSRj71VWVtZ304HuUlxcTFZWVkzyiIhEWsSLhZm1A14Grnf3LTWtWk3b94bEdfeJ7p7u7undu3dvqJj1olneRKS5iWixMLOWhAtFjrv/O2hevev0UvBzTdC+DOhXZfO+wIpI5ttXe5vNTbO8iUhTFcmroQx4Cshz9/uqvPQacHmwfDnwapX2y4Kroo4ANu86XRVvNMubiDQ3kTyyOBq4FDjRzL4MHqcDdwKnmNlC4JTgOcAUYDGQDzwJ/CqC2fZLRkYGEydOJDU1FTMjNTWViRMnapY3EWmyNFOeiEgzsy8z5ekObhERqZWKhYiI1ErFQkREaqViISIitVKxEBGRWqlYiIhIrVQsRESkVioWIiJSq0Z9U56ZrQUK93HzbsC6BowTDcocHcoceY0tLzStzKnuXq+RWBt1sdgfZja7vncwxpoyR4cyR15jywvKrNNQIiJSKxULERGpVXMuFhNjHWAfKHN0KHPkNba80MwzN9s+CxERqbvmfGQhIiJ11KSKhZk9bWZrzOzbKm1dzGyamS0MfnYO2s3MHjSzfDP72sxGV9nm8mD9hWZ2eXWfFeHMfzazeUGuV8ysU9AeMrMdVSaTerzKNoea2TfB7/NgMFNhtPL+wcyW7zHJ1a7Xfhdkmm9mp1ZpPy1oyzezmyORtZbM/6ySt8DMvgzaY/4dB5/Vz8zeMbM8M5trZtcF7XG5P9eQN5735b1ljtv9uYbMkd+f3b3JPIAfAKOBb6u03Q3cHCzfDNwVLJ8OTAUMOAKYFbR3ITxjXxegc7DcOcqZfwi0CJbvqpI5VHW9Pd7nU+DI4PeZCoyNYt4/AP9TzbppwFdAK6A/sAhIDB6LgAFAUrBOWjS/4z1evxe4NV6+4+CzegGjg+X2wILg+4zL/bmGvPG8L+8tc9zuz3vLHI39uUkdWbj7e8CGPZrPBp4Llp8DzqnS/jcP+wToZGa9gFOBae6+wd03AtOA06KZ2d3fcvfy4OknQN+a3iPI3cHdP/bwXvA3/vN7RjxvDc4GXnD3EndfQnjK3MOCR767L3b3UuCFYN2IqClz8K+pC4B/1PQe0fyOAdx9pbt/HixvBfKAPsTp/ry3vHG+L+/tO96bmO/PtWWO5P7cpIrFXvR095UQ/qKBHkF7H2BplfWWBW17a4+VqwhX/V36m9kXZvaumR0btPUhnHOXWGS+NjjV8PSuUyM0ju/4WGC1uy+s0hZX37GZhYBRwCwawf68R96q4nZfriZz3O/Pe/meI7Y/N4disTfVnZ/zGtqjzsyygHIgJ2haCaS4+yjgBuDvZtaB2Gd+DBgIjCSc8d6gPe6/Y+Bidv9XWFx9x2bWDngZuN7dt9S0ajVtUf+u95Y3nvflajLH/f5cw34Rsf25ORSL1cEh165DrzVB+zKgX5X1+gIramiPqqAjchyQERwmEhz+rg+W5xA+TzqEcOaqh/dRzezuq929wt0rgScJH5ZD/H/HLYBzgX/uaoun79jMWhL+g5Dj7v8OmuN2f95L3rjel6vLHO/7cw3fc2T354bodImnB3t06AB/ZvcOwbuD5TPYvUPw06C9C7CEcGdg52C5S5QznwbkAt33WK87kBgsDwCW78oGfBb8Hrs6q06PYt5eVZZ/Tfi8LsCB7N4huJhwZ2CLYLk//+kQPDCa33GV7/ndOP2OjfB55Af2aI/L/bmGvHG7L9eQOW73571ljsb+HLH/OWPxIHz4tRIoI1w5rwa6AjOAhcHPXV+UAY8QrrTfAOlV3ucqwp1X+cCVMcicT/gc6JfB4/Fg3R8Dc4Od8XPgzCrvkw58G/w+DxPccBmlvM8H3+HXwGt7/M+WFWSaT5WrLQhfvbMgeC0r2t9x0P4s8Is91o35dxx81jGETwt8XWU/OD1e9+ca8sbzvry3zHG7P+8tczT2Z93BLSIitWoOfRYiIrKfVCxERKRWKhYiIlIrFQsREamVioWIiNRKxUKaDDPLCkbi/DoYYfPwoP2vZpYWoc/sbmazguEUjt3jtZlmll7leciqjHwr0pi0iHUAkYZgZkcSvkt4tLuXmFk3wjdI4e4/jeBHnwTMc/fLI/gZIjGnIwtpKnoB69y9BMDd17n7CvjPv/DN7Kwq4/rPN7MlweuHBoOszTGzN3cNp1GVmaWa2YzgqGWGmaWY2UjCQ4afHrxnm7qGNbPWZvZMMJ/AF2Z2QtB+hZk9XGW9yWZ2vJklmtmzZvZtsM2vg9cHmtkbQfb3zWxY0H5+sO5XZvbePn+rIgEdWUhT8RZwq5ktAKYD/3T3d6uu4O6vEb4jFzP7F/BuMM7OQ8DZ7r7WzC4Esgnf9VzVw4SHAH/OzK4CHnT3c8zsVsJ3S1+7l1w5ZrYjWE4CKoPla4JMBwd/4N8ysyE1/H4jCQ/5fVCQv1PQPpHwXbsLg9NujwInArcCp7r78irriuwzFQtpEtx9m5kdSniI5hOAf5rZze7+7J7rmtlvgB3u/oiZHQQcBEyz8ERhiYSHBtnTkYQHaYPwcBB31zFahrvPDj43BEwO2o8hXKRw93lmVkh4gLe9WQwMMLOHgNcJF5d2wFHAi/afSc5aBT8/BJ4NiuK/93wzkfpSsZAmw90rgJnATDP7Bric8Hg53zGzk4DzCc+eB+Exlea6+5H1/bj9Clv9ENEQHsa76unh1gDuvtHMRhCezOgawhPcXA9scveR3wvn/ovgSOMM4EszG+nB6KMi+0J9FtIkmNlQMxtcpWkkULjHOqmET9Nc4O67Tg3NB7oHHeSYWUszO7Caj/gIuChYzgA+2M/I7wXvQ3D6KSXIUgCMNLMEM+tHMDx20GGf4O4vA7cQ7sjfAiwxs/ODdSwoKJjZQHef5e63AuvYfQhtkXrTkYU0Fe2Ah4Lz8+WERzvN3GOdKwiP2vpKcNpmhbufbmbnAQ+aWUfC/088QHikzqr+G3jazG4C1gJX7mfeR4HHgyOgcuCK4CquDwkPI/4N4RFBPw/W7wM8Y2a7/oH3u+BnBvCYmf0v0JLwlJ5fAX8OiqcRHp32q/3MK82cRp0VEZFa6TSUiIjUSsVCRERqpWIhIiK1UrEQEZFaqViIiEitVCxERKRWKhYiIlIrFQsREanV/wc7d+gQsHkFigAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Plotting the prediction line\n",
"graph('regr.coef_*x + regr.intercept_', range(1000,2700))\n",
"plt.scatter(size, house_price, color='black')\n",
"plt.ylabel('House Price')\n",
"plt.xlabel('Size of Houses')\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}