Skip to content

Commit 943ca95

Browse files
Merge pull request #876 from MouseLand/cli_restore
updating docs and readme
2 parents 83f00ce + 2c784f0 commit 943ca95

File tree

2 files changed

+11
-2
lines changed

2 files changed

+11
-2
lines changed

README.md

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -24,9 +24,13 @@ Please see install instructions [below](README.md/#Installation), and also check
2424

2525
### :star2: v3 (Feb 2024) :star2:
2626

27-
Cellpose3 enables image restoration in the GUI and the API (CLI support and example notebooks coming soon!) To learn more...
28-
* Check out the paper [thread](https://neuromatch.social/@computingnature/111932247922392030).
27+
Cellpose3 enables image restoration in the GUI, API and CLI (saved to `_seg.npy`). To learn more...
2928
* Check out the [paper](https://www.biorxiv.org/content/10.1101/2024.02.10.579780v1).
29+
* Check out the paper [thread](https://neuromatch.social/@computingnature/111932247922392030).
30+
* API documentation [here](https://cellpose.readthedocs.io/en/latest/restore.html)
31+
* Example google colab notebook for image restoration: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MouseLand/cellpose/blob/main/notebooks/run_cellpose3.ipynb).
32+
* Example google colab notebook with new super-generalist "cyto3" model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MouseLand/cellpose/blob/main/notebooks/run_cyto3.ipynb).
33+
3034

3135
Try out the new `cyto3` super-generalist Cellpose model with `model_type="cyto3"`. There are some Cellpose API changes from v2.0 which will be documented soon.
3236

docs/restore.rst

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,7 @@ DenoiseModel
1717
Initialize a DenoiseModel with the model_type:
1818

1919
::
20+
2021
from cellpose import denoise
2122
dn = denoise.DenoiseModel(model_type="denoise_cyto3", gpu=True)
2223

@@ -26,12 +27,14 @@ using the Cellpose channel format (e.g. ``channels=[1,2]``), or leave
2627
the size of the objects in your image.
2728

2829
::
30+
2931
imgs_dn = dn.eval(imgs, channels=None, diameter=50.)
3032

3133
If you have two channels, and the second is a nuclear channel, you can specify to use
3234
the nuclei restoration models on the second channel, with ``chan2=True``:
3335

3436
::
37+
3538
from cellpose import denoise
3639
dn = denoise.DenoiseModel(model_type="denoise_cyto3", gpu=True, chan2=True)
3740
imgs_dn = dn.eval(imgs, channels=[1,2], diameter=50.)
@@ -42,6 +45,7 @@ images, for example, in which the objects are of diameter 10, specify that in th
4245
function call, and then the model will upsample the image to 30 or 17:
4346

4447
::
48+
4549
from cellpose import denoise
4650
dn = denoise.DenoiseModel(model_type="upsample_cyto3", gpu=True, chan2=True)
4751
imgs_up = dn.eval(imgs, channels=[1,2], diameter=10.)
@@ -55,6 +59,7 @@ The ``CellposeDenoiseModel`` wraps the CellposeModel and DenoiseModel into one c
5559
ensure the channels and diameters are handled properly. See example:
5660

5761
::
62+
5863
from cellpose import denoise
5964
model = denoise.CellposeDenoiseModel(gpu=True, model_type="cyto3",
6065
restore_type="denoise_cyto3", chan2_restore=True)

0 commit comments

Comments
 (0)