Skip to content

In this project i will do 1.Import Libraries 2.Feature engineering(label encoder, check and remove outlier, resample the data) 3.data correlation using heatmap 4.Train-Test split 5.Model Selection 6.Tuning & Cross validation 7.Evaluate with metrics(accuracy,confusion_matrix,classification_report) 8.ROC-AUC Curve 9.Feature importance 10.Finalise

Notifications You must be signed in to change notification settings

NirmalanSK/Hotel-Reservation-Booking-Status-Prediction-DecisionTree-RandomForest-AdaBoost-XGBoost-EndtoEnd

Repository files navigation

Hotel Reservation Booking Status Prediction

Project Overview

This project predicts the booking status of hotel reservations (such as confirmed, canceled, or no-show) using multiple machine learning models. The solution includes data preprocessing, feature engineering, model building, hyperparameter tuning, and evaluation.

The models implemented are:

  • Decision Tree Classifier
  • Random Forest Classifier
  • AdaBoost Classifier
  • XGBoost Classifier

The goal is to compare different algorithms and identify the best-performing model.


Project Structure

Hotel-Reservation-Booking-Status-Prediction-Project/ │ ├── Hotel-Reservation-Booking-Status-Prediction-using-DecisionTree,RandomForest,AdaBoost,XGBoost-EndtoEnd-Project.ipynb ├── README.md └── dataset/ (https://www.kaggle.com/datasets/ahsan81/hotel-reservations-classification-dataset)


Technologies Used

  • Programming Language: Python
  • Libraries:
    • pandas, numpy (Data manipulation)
    • matplotlib, seaborn (Data visualization)
    • scikit-learn (Machine Learning)
    • xgboost (Gradient Boosting)
  • IDE: Jupyter Notebook

Dataset

The dataset contains hotel booking details such as:

  • Customer Information: Name, age, contact
  • Booking Details: Number of adults, children, special requests
  • Reservation Info: Room type, meal plan, arrival date
  • Target Variable: booking_status (e.g., Confirmed, Canceled, No-show)

Workflow

  1. Data Loading & Exploration

    • Understand the structure and characteristics of the data
    • Handle missing values and outliers
  2. Data Preprocessing

    • Encoding categorical variables
    • Feature scaling (if required)
    • Train-test split with stratification
  3. Model Building

    • Train multiple models:
      • Decision Tree
      • Random Forest
      • AdaBoost
      • XGBoost
  4. Hyperparameter Tuning

    • GridSearchCV for optimal parameters
  5. Model Evaluation

    • Accuracy, Precision, Recall, F1-score
    • Confusion Matrix
    • Feature Importance Visualization
  6. Model Selection

    • Choose the best-performing model based on metrics

Results

  • Best model: Random Forest
  • Achieved accuracy: 89.81 %
  • Feature importance visualization included
  • image

Future Enhancements

-Deploy the model using Streamlit or Flask

-Integrate deep learning models for comparison


How to Run the Project

  1. Clone the repository:
    git clone https://github.com/NirmalanSK/hotel-reservation-prediction.git
    cd hotel-reservation-prediction

About

In this project i will do 1.Import Libraries 2.Feature engineering(label encoder, check and remove outlier, resample the data) 3.data correlation using heatmap 4.Train-Test split 5.Model Selection 6.Tuning & Cross validation 7.Evaluate with metrics(accuracy,confusion_matrix,classification_report) 8.ROC-AUC Curve 9.Feature importance 10.Finalise

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published