Skip to content

PriorLabs/tabpfn-extensions

Repository files navigation

TabPFN Extensions

PyPI version Downloads License Discord Twitter Follow Contributions Welcome Last Commit colab

Warning

Experimental Code Notice

Please note that the extensions in this repository are experimental.

  • They are less rigorously tested than the core tabpfn library.
  • APIs are subject to change without notice in future releases. We welcome your feedback and contributions to help improve and stabilize them!

Interactive Notebook Tutorial

Tip

Dive right in with our interactive Colab notebook! It's the best way to get a hands-on feel for TabPFN, walking you through installation, classification, and regression examples.

Open In Colab

Installation

# Clone and install the repository
pip install "tabpfn-extensions[all] @ git+https://github.com/PriorLabs/tabpfn-extensions.git"

Available Extensions

  • post_hoc_ensembles: Improve performance with model combination
  • interpretability: Explain TabPFN predictions with SHAP values and feature selection
  • many_class: Handle classification with more classes than TabPFN's default limit
  • classifier_as_regressor: Use TabPFN's classifier for regression tasks
  • hpo: Automatic hyperparameter tuning for TabPFN
  • rf_pfn: Combine TabPFN with decision trees and random forests
  • unsupervised: Data generation and outlier detection
  • embedding: Get TabPFNs internal dense sample embeddings
  • tabebm: Data augmentation using TabPFN-based Energy-Based Models

Detailed documentation for each extension is available in the respective module directories.

Backend Options

TabPFN Extensions works with two TabPFN implementations:

  1. ** TabPFN Package** - Full PyTorch implementation for local inference:

    pip install tabpfn
  2. ** TabPFN Client** - Lightweight API client for cloud-based inference:

    pip install tabpfn-client

Choose the backend that fits your needs - most extensions work with either option!

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

TabPFN Workflow at a Glance

Follow this decision tree to build your model and choose the right extensions from our ecosystem. It walks you through critical questions about your data, hardware, and performance needs, guiding you to the best solution for your specific use case.

---
config:
  theme: 'default'
  themeVariables:
    edgeLabelBackground: 'white'
---
graph LR
    %% 1. DEFINE COLOR SCHEME & STYLES
    classDef default fill:#fff,stroke:#333,stroke-width:2px,color:#333;
    classDef start_node fill:#e8f5e9,stroke:#43a047,stroke-width:2px,color:#333;
    classDef process_node fill:#e0f2f1,stroke:#00796b,stroke-width:2px,color:#333;
    classDef decision_node fill:#fff8e1,stroke:#ffa000,stroke-width:2px,color:#333;

    style Infrastructure fill:#fff,stroke:#ccc,stroke-width:5px;
    style Unsupervised fill:#fff,stroke:#ccc,stroke-width:5px;
    style Data fill:#fff,stroke:#ccc,stroke-width:5px;
    style Performance fill:#fff,stroke:#ccc,stroke-width:5px;
    style Interpretability fill:#fff,stroke:#ccc,stroke-width:5px;

    %% 2. DEFINE GRAPH STRUCTURE
    subgraph Infrastructure
        start((Start)) --> gpu_check["GPU available?"];
        gpu_check -- Yes --> local_version["Use TabPFN<br/>(local PyTorch)"];
        gpu_check -- No --> api_client["Use TabPFN-Client<br/>(cloud API)"];
        task_type["What is<br/>your task?"]
    end

    local_version --> task_type
    api_client --> task_type

    end_node((Workflow<br/>Complete));

    subgraph Unsupervised
        unsupervised_type["Select<br/>Unsupervised Task"];
        unsupervised_type --> imputation["Imputation"]
        unsupervised_type --> data_gen["Data<br/>Generation"];
        unsupervised_type --> tabebm["Data<br/>Augmentation"];
        unsupervised_type --> density["Outlier<br/>Detection"];
        unsupervised_type --> embedding["Get<br/>Embeddings"];
    end


    subgraph Data
        data_check["Data Checks"];
        model_choice["Samples > 10k or<br/>Classes > 10?"]
        data_check -- "Table Contains Text Data?" --> api_backend_note["Note: API client has<br/>native text support"];
        api_backend_note --> model_choice;
        data_check -- "Time-Series Data?" --> ts_features["Use Time-Series<br/>Features"];
        ts_features --> model_choice;
        data_check -- "Purely Tabular" --> model_choice;
        model_choice -- "No" --> finetune_check;
        model_choice -- "Yes, >10k samples" --> subsample["Large Datasets Guide<br/>"];
        model_choice -- "Yes, >10 classes" --> many_class["Many-Class<br/>Method"];
    end

    subgraph Performance
        finetune_check["Need<br/>Finetuning?"];
        performance_check["Need Even Better Performance?"];
        speed_check["Need faster inference<br/>at prediction time?"];
        kv_cache["Enable KV Cache<br/>(fit_mode='fit_with_cache')<br/><small>Faster predict; +Memory ~O(N×F)</small>"];
        tuning_complete["Tuning Complete"];

        finetune_check -- Yes --> finetuning["Finetuning"];
        finetune_check -- No --> performance_check;

        finetuning --> performance_check;

        performance_check -- No --> tuning_complete;
        performance_check -- Yes --> hpo["HPO"];
        performance_check -- Yes --> post_hoc["Post-Hoc<br/>Ensembling"];
        performance_check -- Yes --> more_estimators["More<br/>Estimators"];
        performance_check -- Yes --> speed_check;

        speed_check -- Yes --> kv_cache;
        speed_check -- No --> tuning_complete;

        hpo --> tuning_complete;
        post_hoc --> tuning_complete;
        more_estimators --> tuning_complete;
        kv_cache --> tuning_complete;
    end

    subgraph Interpretability

        tuning_complete --> interpretability_check;

        interpretability_check["Need<br/>Interpretability?"];

        interpretability_check --> feature_selection["Feature Selection"];
        interpretability_check --> partial_dependence["Partial Dependence Plots"];
        interpretability_check --> shapley["Explain with<br/>SHAP"];
        interpretability_check --> shap_iq["Explain with<br/>SHAP IQ"];
        interpretability_check -- No --> end_node;

        feature_selection --> end_node;
        partial_dependence --> end_node;
        shapley --> end_node;
        shap_iq --> end_node;

    end

    %% 3. LINK SUBGRAPHS AND PATHS
    task_type -- "Classification or Regression" --> data_check;
    task_type -- "Unsupervised" --> unsupervised_type;

    subsample --> finetune_check;
    many_class --> finetune_check;

    %% 4. APPLY STYLES
    class start,end_node start_node;
    class local_version,api_client,imputation,data_gen,tabebm,density,embedding,api_backend_note,ts_features,subsample,many_class,finetuning,feature_selection,partial_dependence,shapley,shap_iq,hpo,post_hoc,more_estimators,kv_cache process_node;
    class gpu_check,task_type,unsupervised_type,data_check,model_choice,finetune_check,interpretability_check,performance_check,speed_check decision_node;
    class tuning_complete process_node;

    %% 5. ADD CLICKABLE LINKS (INCLUDING KV CACHE EXAMPLE)
    click local_version "https://github.com/PriorLabs/TabPFN" "TabPFN Backend Options" _blank
    click api_client "https://github.com/PriorLabs/tabpfn-client" "TabPFN API Client" _blank
    click api_backend_note "https://github.com/PriorLabs/tabpfn-client" "TabPFN API Backend" _blank
    click unsupervised_type "https://github.com/PriorLabs/tabpfn-extensions" "TabPFN Extensions" _blank
    click imputation "https://github.com/PriorLabs/tabpfn-extensions/blob/main/examples/unsupervised/imputation.py" "TabPFN Imputation Example" _blank
    click data_gen "https://github.com/PriorLabs/tabpfn-extensions/blob/main/examples/unsupervised/generate_data.py" "TabPFN Data Generation Example" _blank
    click tabebm "https://github.com/PriorLabs/tabpfn-extensions/blob/main/examples/tabebm/tabebm_augment_real_world_data.ipynb" "TabEBM Data Augmentation Example" _blank
    click density "https://github.com/PriorLabs/tabpfn-extensions/blob/main/examples/unsupervised/density_estimation_outlier_detection.py" "TabPFN Density Estimation/Outlier Detection Example" _blank
    click embedding "https://github.com/PriorLabs/tabpfn-extensions/tree/main/examples/embedding" "TabPFN Embedding Example" _blank
    click ts_features "https://github.com/PriorLabs/tabpfn-time-series" "TabPFN Time-Series Example" _blank
    click many_class "https://github.com/PriorLabs/tabpfn-extensions/blob/main/examples/many_class/many_class_classifier_example.py" "Many Class Example" _blank
    click finetuning "https://github.com/PriorLabs/TabPFN/blob/main/examples/finetune_classifier.py" "Finetuning Example" _blank
    click feature_selection "https://github.com/PriorLabs/tabpfn-extensions/blob/main/examples/interpretability/feature_selection.py" "Feature Selection Example" _blank
    click partial_dependence "https://github.com/PriorLabs/tabpfn-extensions/blob/main/examples/interpretability/pdp_example.py" "Partial Dependence Plots Example" _blank
    click shapley "https://github.com/PriorLabs/tabpfn-extensions/blob/main/examples/interpretability/shap_example.py" "Shapley Values Example" _blank
    click shap_iq "https://github.com/PriorLabs/tabpfn-extensions/blob/main/examples/interpretability/shapiq_example.py" "SHAP IQ Example" _blank
    click post_hoc "https://github.com/PriorLabs/tabpfn-extensions/blob/main/examples/phe/phe_example.py" "Post-Hoc Ensemble Example" _blank
    click hpo "https://github.com/PriorLabs/tabpfn-extensions/blob/main/examples/hpo/tuned_tabpfn.py" "HPO Example" _blank
    click subsample "https://github.com/PriorLabs/tabpfn-extensions/blob/main/examples/large_datasets/large_datasets_example.py" "Large Datasets Example" _blank
    click kv_cache "https://github.com/PriorLabs/TabPFN/blob/main/examples/kv_cache_fast_prediction.py" "KV Cache Fast Prediction Example" _blank

Loading

Anonymized Telemetry

This project collects fully anonymous usage telemetry with an option to opt-out of any telemetry or opt-in to extended telemetry.

The data is used exclusively to help us provide stability to the relevant products and compute environments and guide future improvements.

  • No personal data is collected
  • No code, model inputs, or outputs are ever sent
  • Data is strictly anonymous and cannot be linked to individuals

For details on telemetry, please see our Telemetry Reference and our Privacy Policy.

To opt out, set the following environment variable:

export TABPFN_DISABLE_TELEMETRY=1

For Contributors

Interested in adding your own extension? We welcome contributions!

# Clone and set up for development
git clone https://github.com/PriorLabs/tabpfn-extensions.git
cd tabpfn-extensions

# Lightweight dev setup (fast)
pip install -e ".[dev]"

# Test your extension with fast mode
FAST_TEST_MODE=1 pytest tests/test_your_extension.py -v

See our Contribution Guide for more details.

Contributors


Built with ❤️ by the TabPFN community

About

Community extensions for TabPFN - the foundation model for tabular data. Built with TabPFN! 🤗

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Languages