|
| 1 | +# Linear independence |
| 2 | + |
| 3 | +```agda |
| 4 | +module linear-algebra.linear-independence-left-modules-rings where |
| 5 | +``` |
| 6 | + |
| 7 | +<details><summary>Imports</summary> |
| 8 | + |
| 9 | +```agda |
| 10 | +open import elementary-number-theory.natural-numbers |
| 11 | +
|
| 12 | +open import foundation.dependent-pair-types |
| 13 | +open import foundation.identity-types |
| 14 | +open import foundation.propositions |
| 15 | +open import foundation.universe-levels |
| 16 | +
|
| 17 | +open import foundation-core.sets |
| 18 | +
|
| 19 | +open import linear-algebra.left-modules-rings |
| 20 | +open import linear-algebra.subsets-left-modules-rings |
| 21 | +open import linear-algebra.linear-combinations-tuples-of-vectors-left-modules-rings |
| 22 | +
|
| 23 | +open import lists.tuples |
| 24 | +open import lists.functoriality-tuples |
| 25 | +
|
| 26 | +open import ring-theory.rings |
| 27 | +``` |
| 28 | + |
| 29 | +</details> |
| 30 | + |
| 31 | +## Idea |
| 32 | + |
| 33 | +Let `M` be a [left module](linear-algebra.left-modules-rings.md) over a |
| 34 | +[ring](ring-theory.rings.md) `R`. |
| 35 | + |
| 36 | +A tuple `x_1, ..., x_n` of elements of `M` is a |
| 37 | +{{#concept "linearly independent tuple" Agda=is-linearly-independent-tuple-left-module-prop-Ring Agda=linearly-independent-tuple-left-module-Ring}}, |
| 38 | +if `r_1 * x_1 + ... + r_n * x_n = 0` implies `r_1 = ... = r_n = 0`. |
| 39 | + |
| 40 | +A subset `S` of `M` is a |
| 41 | +{{#concept "linearly independent subset" Agda=is-linearly-independent-subset-left-module-prop-Ring Agda=linearly-independent-subset-left-module-Ring}} |
| 42 | +if any tuple `x_1, ..., x_n` of elements of `S` is linearly independent. |
| 43 | + |
| 44 | +## Definitions |
| 45 | + |
| 46 | +### The condition of a tuple being linearly independent |
| 47 | + |
| 48 | +```agda |
| 49 | +module _ |
| 50 | + {l1 l2 : Level} |
| 51 | + {n : ℕ} |
| 52 | + (R : Ring l1) |
| 53 | + (M : left-module-Ring l2 R) |
| 54 | + (vectors : tuple (type-left-module-Ring R M) n) |
| 55 | + where |
| 56 | +
|
| 57 | + is-linearly-independent-tuple-left-module-prop-Ring : Prop (l1 ⊔ l2) |
| 58 | + is-linearly-independent-tuple-left-module-prop-Ring = |
| 59 | + Π-Prop |
| 60 | + ( tuple (type-Ring R) n) |
| 61 | + λ scalars → |
| 62 | + hom-Prop |
| 63 | + ( Id-Prop |
| 64 | + ( set-left-module-Ring R M) |
| 65 | + ( linear-combination-tuple-left-module-Ring R M scalars vectors) |
| 66 | + ( zero-left-module-Ring R M)) |
| 67 | + ( Id-Prop |
| 68 | + ( tuple-Set (set-Ring R) n) |
| 69 | + ( scalars) |
| 70 | + ( trivial-tuple-left-module-Ring R M n)) |
| 71 | +
|
| 72 | + is-linearly-independent-tuple-left-module-Ring : UU (l1 ⊔ l2) |
| 73 | + is-linearly-independent-tuple-left-module-Ring = |
| 74 | + type-Prop is-linearly-independent-tuple-left-module-prop-Ring |
| 75 | +``` |
| 76 | + |
| 77 | +### Linearly independent tuple in a left-module over a ring |
| 78 | + |
| 79 | +```agda |
| 80 | +linearly-independent-tuple-left-module-Ring : |
| 81 | + {l1 l2 : Level} |
| 82 | + (n : ℕ) (R : Ring l1) (M : left-module-Ring l2 R) → UU (l1 ⊔ l2) |
| 83 | +linearly-independent-tuple-left-module-Ring n R M = |
| 84 | + Σ ( tuple (type-left-module-Ring R M) n) |
| 85 | + ( λ v → is-linearly-independent-tuple-left-module-Ring R M v) |
| 86 | +
|
| 87 | +module _ |
| 88 | + {l1 l2 : Level} |
| 89 | + {n : ℕ} |
| 90 | + (R : Ring l1) |
| 91 | + (M : left-module-Ring l2 R) |
| 92 | + (vectors : linearly-independent-tuple-left-module-Ring n R M) |
| 93 | + where |
| 94 | +
|
| 95 | + tuple-linearly-independent-tuple : tuple (type-left-module-Ring R M) n |
| 96 | + tuple-linearly-independent-tuple = pr1 vectors |
| 97 | +``` |
| 98 | + |
| 99 | +### The condition of a subset being linearly independent |
| 100 | + |
| 101 | +```agda |
| 102 | +module _ |
| 103 | + {l1 l2 l3 : Level} |
| 104 | + (R : Ring l1) |
| 105 | + (M : left-module-Ring l2 R) |
| 106 | + (S : subset-left-module-Ring l3 R M) |
| 107 | + where |
| 108 | +
|
| 109 | + is-linearly-independent-subset-left-module-prop-Ring : Prop (l1 ⊔ l2 ⊔ l3) |
| 110 | + is-linearly-independent-subset-left-module-prop-Ring = |
| 111 | + Π-Prop |
| 112 | + ( ℕ) |
| 113 | + ( λ n → |
| 114 | + Π-Prop |
| 115 | + ( tuple (type-subset-left-module-Ring R M S) n) |
| 116 | + ( λ vectors → is-linearly-independent-tuple-left-module-prop-Ring R M |
| 117 | + ( map-tuple (inclusion-subset-left-module-Ring R M S) vectors))) |
| 118 | +
|
| 119 | + is-linearly-independent-subset-left-module-Ring : UU (l1 ⊔ l2 ⊔ l3) |
| 120 | + is-linearly-independent-subset-left-module-Ring = |
| 121 | + type-Prop is-linearly-independent-subset-left-module-prop-Ring |
| 122 | +``` |
| 123 | + |
| 124 | +### Linearly independent subset of a left module over a ring |
| 125 | + |
| 126 | +```agda |
| 127 | +linearly-independent-subset-left-module-Ring : |
| 128 | + {l1 l2 : Level} |
| 129 | + (l3 : Level) (R : Ring l1) (M : left-module-Ring l2 R) → |
| 130 | + UU (l1 ⊔ l2 ⊔ lsuc l3) |
| 131 | +linearly-independent-subset-left-module-Ring l3 R M = |
| 132 | + Σ ( subset-left-module-Ring l3 R M) |
| 133 | + ( λ S → is-linearly-independent-subset-left-module-Ring R M S) |
| 134 | +
|
| 135 | +module _ |
| 136 | + {l1 l2 l3 : Level} |
| 137 | + (R : Ring l1) |
| 138 | + (M : left-module-Ring l2 R) |
| 139 | + (S : linearly-independent-subset-left-module-Ring l3 R M) |
| 140 | + where |
| 141 | +
|
| 142 | + subset-linearly-independent-tuple : subset-left-module-Ring l3 R M |
| 143 | + subset-linearly-independent-tuple = pr1 S |
| 144 | +``` |
0 commit comments