@@ -12,6 +12,11 @@ open import elementary-number-theory.natural-numbers
1212open import foundation.action-on-identifications-functions
1313open import foundation.identity-types
1414open import foundation.universe-levels
15+ open import foundation.coproduct-types
16+
17+ open import foundation-core.identity-types
18+
19+ open import univalent-combinatorics.standard-finite-types
1520
1621open import linear-algebra.left-modules-rings
1722
@@ -291,3 +296,143 @@ module _
291296 ( vectors-b))
292297 by refl
293298```
299+
300+ ###
301+
302+ ``` agda
303+ module _
304+ {l1 l2 : Level}
305+ (R : Ring l1)
306+ (M : left-module-Ring l2 R)
307+ where
308+
309+ zero-trivial-tuple-linear-combination-tuple-left-module-Ring :
310+ (n : ℕ) →
311+ (vectors : tuple (type-left-module-Ring R M) n) →
312+ linear-combination-tuple-left-module-Ring R M
313+ ( trivial-tuple-Ring R n)
314+ ( vectors) =
315+ zero-left-module-Ring R M
316+ zero-trivial-tuple-linear-combination-tuple-left-module-Ring n empty-tuple =
317+ refl
318+ zero-trivial-tuple-linear-combination-tuple-left-module-Ring
319+ (succ-ℕ n) (x ∷ vectors) =
320+ equational-reasoning
321+ linear-combination-tuple-left-module-Ring R M
322+ ( zero-Ring R ∷ trivial-tuple-Ring R n)
323+ ( x ∷ vectors)
324+ = add-left-module-Ring R M
325+ ( linear-combination-tuple-left-module-Ring R M
326+ ( trivial-tuple-Ring R n)
327+ ( vectors))
328+ ( mul-left-module-Ring R M (zero-Ring R) x)
329+ by refl
330+ = add-left-module-Ring R M
331+ ( linear-combination-tuple-left-module-Ring R M
332+ ( trivial-tuple-Ring R n)
333+ ( vectors))
334+ ( zero-left-module-Ring R M)
335+ by
336+ ap
337+ ( λ y → add-left-module-Ring R M
338+ ( linear-combination-tuple-left-module-Ring R M
339+ ( trivial-tuple-Ring R n)
340+ ( vectors))
341+ ( y))
342+ (left-zero-law-mul-left-module-Ring R M x)
343+ = add-left-module-Ring R M
344+ ( zero-left-module-Ring R M)
345+ ( zero-left-module-Ring R M)
346+ by
347+ ap
348+ ( λ y → add-left-module-Ring R M y (zero-left-module-Ring R M))
349+ ( zero-trivial-tuple-linear-combination-tuple-left-module-Ring n
350+ ( vectors))
351+ = zero-left-module-Ring R M
352+ by left-unit-law-add-left-module-Ring R M (zero-left-module-Ring R M)
353+ ```
354+
355+ ###
356+
357+ ``` agda
358+ module _
359+ {l1 l2 : Level}
360+ (R : Ring l1)
361+ (M : left-module-Ring l2 R)
362+ where
363+
364+ component-with-value-tuple-trivial-tuple-linear-combination-tuple-left-module-Ring :
365+ (n : ℕ) →
366+ (r : type-Ring R)
367+ (vectors : tuple (type-left-module-Ring R M) n) →
368+ (i : Fin n) →
369+ linear-combination-tuple-left-module-Ring R M
370+ ( with-value-tuple i r (trivial-tuple-Ring R n))
371+ ( vectors) =
372+ mul-left-module-Ring R M r (component-tuple n vectors i)
373+ component-with-value-tuple-trivial-tuple-linear-combination-tuple-left-module-Ring
374+ (succ-ℕ n) r (x ∷ vectors) (inr _) =
375+ equational-reasoning
376+ linear-combination-tuple-left-module-Ring R M
377+ ( with-value-tuple (inr _) r (trivial-tuple-Ring R (succ-ℕ n)))
378+ ( x ∷ vectors)
379+ = linear-combination-tuple-left-module-Ring R M
380+ ( r ∷ (trivial-tuple-Ring R n))
381+ ( x ∷ vectors)
382+ by refl
383+ = add-left-module-Ring R M
384+ ( linear-combination-tuple-left-module-Ring R M
385+ ( trivial-tuple-Ring R n)
386+ ( vectors))
387+ ( mul-left-module-Ring R M r x)
388+ by refl
389+ = add-left-module-Ring R M
390+ ( zero-left-module-Ring R M)
391+ ( mul-left-module-Ring R M r x)
392+ by
393+ ap
394+ ( λ y → add-left-module-Ring R M y (mul-left-module-Ring R M r x))
395+ (zero-trivial-tuple-linear-combination-tuple-left-module-Ring R M n vectors)
396+ = mul-left-module-Ring R M r x
397+ by left-unit-law-add-left-module-Ring R M (mul-left-module-Ring R M r x)
398+ = mul-left-module-Ring R M r (component-tuple (succ-ℕ n) (x ∷ vectors) (inr _))
399+ by ap (λ y → mul-left-module-Ring R M r y) refl
400+ component-with-value-tuple-trivial-tuple-linear-combination-tuple-left-module-Ring
401+ (succ-ℕ n) r (x ∷ vectors) (inl i) =
402+ equational-reasoning
403+ linear-combination-tuple-left-module-Ring R M
404+ ( with-value-tuple (inl i) r (trivial-tuple-Ring R (succ-ℕ n)))
405+ ( x ∷ vectors)
406+ = linear-combination-tuple-left-module-Ring R M
407+ ( zero-Ring R ∷ (with-value-tuple i r (trivial-tuple-Ring R n)))
408+ ( x ∷ vectors)
409+ by refl
410+ = add-left-module-Ring R M
411+ ( linear-combination-tuple-left-module-Ring R M
412+ ( with-value-tuple i r (trivial-tuple-Ring R n))
413+ ( vectors))
414+ ( mul-left-module-Ring R M (zero-Ring R) x)
415+ by refl
416+ = add-left-module-Ring R M
417+ ( linear-combination-tuple-left-module-Ring R M
418+ ( with-value-tuple i r (trivial-tuple-Ring R n))
419+ ( vectors))
420+ ( zero-left-module-Ring R M)
421+ by
422+ ap
423+ ( λ y → add-left-module-Ring R M
424+ ( linear-combination-tuple-left-module-Ring R M
425+ ( with-value-tuple i r (trivial-tuple-Ring R n))
426+ ( vectors))
427+ ( y))
428+ ( left-zero-law-mul-left-module-Ring R M x)
429+ = linear-combination-tuple-left-module-Ring R M
430+ ( with-value-tuple i r (trivial-tuple-Ring R n))
431+ ( vectors)
432+ by right-unit-law-add-left-module-Ring R M
433+ ( linear-combination-tuple-left-module-Ring R M
434+ ( with-value-tuple i r (trivial-tuple-Ring R n))
435+ ( vectors))
436+ = mul-left-module-Ring R M r (component-tuple (succ-ℕ n) (x ∷ vectors) (inl i))
437+ by component-with-value-tuple-trivial-tuple-linear-combination-tuple-left-module-Ring n r vectors i
438+ ```
0 commit comments