A comprehensive platform for monitoring and predicting emerging technology trends using AI and multiple data sources.
- Real-time Technology Monitoring: Track emerging technologies across GitHub, patents, research papers, and job postings
- AI-Powered Trend Prediction: Machine learning models predict which technologies will gain traction
- Interactive Dashboard: Beautiful web interface for exploring trends and insights
- Trend Scoring: Proprietary algorithm scores technologies based on adoption potential
- Market Intelligence: Actionable insights for businesses and innovators
- API Access: RESTful API for programmatic access to trend data
tech-trend-radar/
├── backend/ # API server and ML models
│ ├── api/ # REST API endpoints
│ ├── models/ # Machine learning models
│ ├── data_collectors/ # Data collection modules
│ └── processors/ # Data processing pipelines
├── frontend/ # React web dashboard
│ ├── components/ # UI components
│ ├── pages/ # Dashboard pages
│ └── utils/ # Helper functions
├── data/ # Raw and processed data
├── notebooks/ # Jupyter notebooks for analysis
└── scripts/ # Utility scripts
- Backend: Python, FastAPI, PostgreSQL, Redis
- Frontend: React, TypeScript, Chart.js, Tailwind CSS
- ML/AI: scikit-learn, TensorFlow, pandas, numpy
- Data Sources: GitHub API, Google Patents, arXiv, job boards
- Deployment: Docker, GitHub Actions
- Python 3.9+
- Node.js 16+
- PostgreSQL
- Redis
- Clone the repository
git clone https://github.com/yourusername/tech-trend-radar.git
cd tech-trend-radar- Install backend dependencies
cd backend
pip install -r requirements.txt- Install frontend dependencies
cd frontend
npm install- Set up environment variables
cp .env.example .env
# Edit .env with your API keys and database config- Initialize the database
cd backend
python scripts/init_db.py- Run the application
# Backend
cd backend
uvicorn main:app --reload
# Frontend
cd frontend
npm start- GitHub: Repository trends, star growth, language adoption
- Patents: Patent filings, citations, technological domains
- Research Papers: arXiv, Google Scholar, academic trends
- Job Market: Technology skill demands, salary trends
- Social Media: Twitter mentions, LinkedIn discussions
- Trend Detection: Time series analysis for identifying emerging patterns
- Adoption Prediction: Forecasting technology adoption curves
- Sentiment Analysis: Understanding community perception
- Clustering: Grouping related technologies and trends
GET /api/trends- Get current technology trendsGET /api/predictions- Get trend predictionsGET /api/technologies/{tech_id}- Get specific technology detailsPOST /api/analyze- Analyze custom technology queries
import requests
# Get current trends
response = requests.get('http://localhost:8000/api/trends')
trends = response.json()
# Get predictions for a specific technology
response = requests.get('http://localhost:8000/api/predictions?tech=quantum-computing')
predictions = response.json()- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
This project is licensed under the MIT License - see the LICENSE file for details.
- Thanks to the open-source community for providing excellent tools and datasets
- Special recognition to Kaggle for hosting valuable datasets
- Inspired by the need for better technology trend intelligence
Built with ❤️ for the innovation community