Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Nov 22, 2025

📄 14% (0.14x) speedup for _maybe_prepare_times in xarray/backends/netcdf3.py

⏱️ Runtime : 1.32 milliseconds 1.15 milliseconds (best of 25 runs)

📝 Explanation and details

The optimized code achieves a 14% speedup through three key optimizations that reduce computational overhead in data processing pipelines:

1. Set-based Lookup Optimization in _is_time_like()

  • Replaced the list time_strings with a module-level set _TIME_STRINGS_SET
  • Changed any(tstr == units for tstr in time_strings) to units in _TIME_STRINGS_SET
  • This converts O(n) linear search to O(1) hash lookup, eliminating the 137.6μs bottleneck visible in line profiling (reduced to 21.9μs)
  • The set is created once at module load instead of recreating the list on every function call

2. Precomputed Constants in _maybe_prepare_times()

  • Moved np.iinfo(np.int64).min computation to module-level constant _INT64_MIN
  • This eliminates repeated expensive numpy introspection calls, reducing the comparison line from 616.7μs to 314.5μs
  • Cached var.attrs reference to avoid repeated attribute access

3. Optimized Conditional Logic

  • Restructured the fill value retrieval to only call attrs.get("_FillValue", np.nan) when actually needed (inside the mask check)
  • This reduces unnecessary dictionary lookups when no replacement is required

Performance Impact Analysis:
The optimizations are particularly effective for:

  • Non-time-like units (36-43% faster): Quick rejection via set lookup instead of expensive list iteration
  • Time-like units without replacement (23-31% faster): Benefits from precomputed constants and reduced attribute access
  • Large arrays (15-28% faster): Constant-time improvements scale well with data size

Hot Path Context:
Given that _maybe_prepare_times() is called from encode_nc3_variable() in NetCDF encoding workflows, these micro-optimizations compound significantly when processing large datasets or many variables. The function processes integer arrays to handle sentinel values, making it critical in data serialization pipelines where every millisecond matters.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 50 Passed
⏪ Replay Tests 255 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import numpy as np

# imports
import pytest  # used for unit tests
from xarray.backends.netcdf3 import _maybe_prepare_times


# Helper class to mimic xarray.Variable-like object
class DummyVar:
    def __init__(self, data, attrs=None):
        self.data = data
        self.attrs = attrs or {}


# -------------------------
# Unit tests for _maybe_prepare_times
# -------------------------

# 1. Basic Test Cases


def test_basic_int64_time_like_with_min_replacement():
    # Data contains np.iinfo(np.int64).min, units is time-like, _FillValue is set
    arr = np.array([1, 2, np.iinfo(np.int64).min, 4], dtype=np.int64)
    fill = -9999
    var = DummyVar(arr, {"units": "days", "_FillValue": fill})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 25.7μs -> 23.0μs (11.8% faster)


def test_basic_int64_time_like_with_nan_replacement():
    # Data contains np.iinfo(np.int64).min, units is time-like, _FillValue is not set
    arr = np.array([np.iinfo(np.int64).min, 2], dtype=np.int64)
    var = DummyVar(arr, {"units": "hours"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 26.9μs -> 23.4μs (14.9% faster)


def test_basic_int64_non_time_like():
    # Data contains np.iinfo(np.int64).min, units is not time-like
    arr = np.array([np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, {"units": "meters"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 3.68μs -> 2.57μs (43.1% faster)


def test_basic_float_data():
    # Data is float, no replacement should occur even if units is time-like
    arr = np.array([1.0, np.nan, 3.0])
    var = DummyVar(arr, {"units": "days"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 968ns -> 890ns (8.76% faster)


def test_basic_uint_data():
    # Data is unsigned int, units is time-like, np.iinfo(np.int64).min cannot appear in uint
    arr = np.array([1, 2, 3], dtype=np.uint64)
    var = DummyVar(arr, {"units": "seconds"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 25.3μs -> 19.2μs (31.5% faster)


def test_basic_no_units():
    # Data is int, units missing
    arr = np.array([1, 2, np.iinfo(np.int64).min], dtype=np.int64)
    var = DummyVar(arr, {})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 1.02μs -> 1.07μs (4.93% slower)


def test_basic_units_none():
    # Data is int, units explicitly None
    arr = np.array([1, 2, np.iinfo(np.int64).min], dtype=np.int64)
    var = DummyVar(arr, {"units": None})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 1.02μs -> 1.08μs (5.01% slower)


# 2. Edge Test Cases


def test_edge_empty_array():
    # Empty array, nothing to replace
    arr = np.array([], dtype=np.int64)
    var = DummyVar(arr, {"units": "days"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 22.8μs -> 18.1μs (26.2% faster)


def test_edge_all_min_values():
    # All values are np.iinfo(np.int64).min
    arr = np.full(5, np.iinfo(np.int64).min, dtype=np.int64)
    fill = 12345
    var = DummyVar(arr, {"units": "hours", "_FillValue": fill})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 23.6μs -> 20.2μs (17.1% faster)


def test_edge_mixed_dtype_int32():
    # Data is int32, units is time-like, np.iinfo(np.int64).min cannot appear in int32
    arr = np.array([1, 2, -2147483648], dtype=np.int32)
    var = DummyVar(arr, {"units": "days"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 23.9μs -> 18.6μs (28.7% faster)


def test_edge_units_with_since_valid():
    # Data contains np.iinfo(np.int64).min, units is "days since 2000-01-01"
    arr = np.array([np.iinfo(np.int64).min, 123], dtype=np.int64)
    var = DummyVar(arr, {"units": "days since 2000-01-01", "_FillValue": -1})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 33.7μs -> 31.6μs (6.68% faster)


def test_edge_units_with_since_invalid():
    # Data contains np.iinfo(np.int64).min, units is "nonsense since 2000-01-01"
    arr = np.array([np.iinfo(np.int64).min, 123], dtype=np.int64)
    var = DummyVar(arr, {"units": "nonsense since 2000-01-01"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 33.8μs -> 32.9μs (2.78% faster)


def test_edge_units_as_bytes():
    # Units provided as bytes
    arr = np.array([np.iinfo(np.int64).min, 5], dtype=np.int64)
    var = DummyVar(arr, {"units": b"days", "_FillValue": 0})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 4.07μs -> 2.93μs (38.8% faster)


def test_edge_fillvalue_is_nan():
    # _FillValue is np.nan
    arr = np.array([np.iinfo(np.int64).min, 1], dtype=np.int64)
    var = DummyVar(arr, {"units": "days", "_FillValue": np.nan})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 27.2μs -> 24.1μs (12.8% faster)


def test_edge_fillvalue_is_none():
    # _FillValue is None, should fallback to np.nan
    arr = np.array([np.iinfo(np.int64).min, 1], dtype=np.int64)
    var = DummyVar(arr, {"units": "days", "_FillValue": None})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 27.3μs -> 24.2μs (12.7% faster)


def test_edge_units_case_sensitivity():
    # Units is "Days" (capital D), should not match
    arr = np.array([np.iinfo(np.int64).min, 1], dtype=np.int64)
    var = DummyVar(arr, {"units": "Days", "_FillValue": 999})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 3.56μs -> 2.58μs (37.7% faster)


def test_edge_units_with_extra_text():
    # Units is "days accumulated", should not match
    arr = np.array([np.iinfo(np.int64).min, 1], dtype=np.int64)
    var = DummyVar(arr, {"units": "days accumulated", "_FillValue": 999})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 3.44μs -> 2.53μs (36.1% faster)


def test_edge_units_with_since_and_extra_whitespace():
    # Units is "days   since   2000-01-01", should match
    arr = np.array([np.iinfo(np.int64).min, 2], dtype=np.int64)
    var = DummyVar(arr, {"units": "days   since   2000-01-01", "_FillValue": 0})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 33.7μs -> 32.1μs (5.06% faster)


def test_edge_units_with_since_and_invalid_date():
    # Units is "days since nonsense-date", should still match as regex doesn't validate date
    arr = np.array([np.iinfo(np.int64).min, 2], dtype=np.int64)
    var = DummyVar(arr, {"units": "days since nonsense-date", "_FillValue": 0})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 12.7μs -> 12.8μs (0.431% slower)


# 3. Large Scale Test Cases


def test_large_scale_no_min_values():
    # Large array, no np.iinfo(np.int64).min present
    arr = np.arange(1000, dtype=np.int64)
    var = DummyVar(arr, {"units": "days"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 25.1μs -> 19.8μs (26.4% faster)


def test_large_scale_some_min_values():
    # Large array, some np.iinfo(np.int64).min present
    arr = np.arange(1000, dtype=np.int64)
    arr[::100] = np.iinfo(np.int64).min  # every 100th value is min
    fill = -9999
    var = DummyVar(arr, {"units": "days", "_FillValue": fill})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 25.7μs -> 23.0μs (11.8% faster)
    for i in range(0, 1000, 100):
        pass


def test_large_scale_all_min_values():
    # Large array, all values are np.iinfo(np.int64).min
    arr = np.full(1000, np.iinfo(np.int64).min, dtype=np.int64)
    fill = 123456
    var = DummyVar(arr, {"units": "days", "_FillValue": fill})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 24.3μs -> 21.4μs (13.3% faster)


def test_large_scale_non_time_like():
    # Large array, units is not time-like
    arr = np.full(1000, np.iinfo(np.int64).min, dtype=np.int64)
    var = DummyVar(arr, {"units": "meters", "_FillValue": -1})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 3.69μs -> 2.61μs (41.5% faster)


def test_large_scale_float_data():
    # Large float array, units is time-like
    arr = np.random.rand(1000)
    var = DummyVar(arr, {"units": "days"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 953ns -> 1.01μs (5.46% slower)


def test_large_scale_uint_data():
    # Large unsigned int array, units is time-like
    arr = np.arange(1000, dtype=np.uint64)
    var = DummyVar(arr, {"units": "days"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 26.3μs -> 20.4μs (28.7% faster)


# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
import numpy as np

# imports
import pytest  # used for our unit tests
from xarray.backends.netcdf3 import _maybe_prepare_times


# Helper class to mimic xarray.Variable interface
class DummyVar:
    def __init__(self, data, attrs=None):
        self.data = data
        self.attrs = attrs or {}


# unit tests

# ------------------- Basic Test Cases -------------------


def test_basic_int_time_like_with_fillvalue():
    # Test replacement of np.iinfo(np.int64).min with _FillValue for time-like units
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "days", "_FillValue": -9999})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 25.9μs -> 22.9μs (12.7% faster)


def test_basic_int_time_like_without_fillvalue():
    # Should replace np.iinfo(np.int64).min with np.nan if _FillValue is not given
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "hours"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 26.9μs -> 24.0μs (11.9% faster)


def test_basic_int_not_time_like():
    # Should not replace anything if units are not time-like
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "meters"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 3.56μs -> 2.60μs (36.9% faster)


def test_basic_float_time_like():
    # Should not replace anything for float dtype
    arr = np.array([1.0, float(np.iinfo(np.int64).min), 3.0], dtype=np.float64)
    var = DummyVar(arr, attrs={"units": "days", "_FillValue": -9999})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 811ns -> 860ns (5.70% slower)


def test_basic_no_units():
    # Should not replace anything if units are missing
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 1.08μs -> 1.10μs (1.72% slower)


def test_basic_units_none():
    # Should not replace anything if units is None
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": None})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 973ns -> 1.02μs (5.07% slower)


def test_basic_units_string_not_time_like():
    # Should not replace anything if units string is not time-like
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "banana"})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 3.74μs -> 2.66μs (40.2% faster)


def test_basic_units_time_like_with_since():
    # Should detect "days since 2000-01-01" as time-like
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "days since 2000-01-01", "_FillValue": -1})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 33.9μs -> 32.8μs (3.47% faster)


def test_basic_units_invalid_since():
    # Should not treat invalid "since" units as time-like
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "days since", "_FillValue": -1})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 7.89μs -> 8.44μs (6.50% slower)


# ------------------- Edge Test Cases -------------------


def test_edge_all_min_values():
    # All values are np.iinfo(np.int64).min
    arr = np.full(5, np.iinfo(np.int64).min, dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "minutes", "_FillValue": 999})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 23.8μs -> 20.9μs (13.7% faster)


def test_edge_no_min_values():
    # No values are np.iinfo(np.int64).min
    arr = np.array([10, 20, 30], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "seconds", "_FillValue": 0})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 22.7μs -> 17.8μs (27.2% faster)


def test_edge_empty_array():
    # Empty array should be handled gracefully
    arr = np.array([], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "days", "_FillValue": -1})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 22.1μs -> 17.1μs (29.4% faster)


def test_edge_non_integer_dtype():
    # Non-integer dtype (e.g., string) should not be processed
    arr = np.array(["a", "b", "c"])
    var = DummyVar(arr, attrs={"units": "days", "_FillValue": -1})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 1.03μs -> 985ns (4.47% faster)


def test_edge_units_with_extra_whitespace():
    # Units with extra whitespace should still be detected as time-like
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "  days  ", "_FillValue": -5})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 3.69μs -> 2.65μs (38.9% faster)


def test_edge_units_with_since_and_extra_whitespace():
    # Units with "since" and extra whitespace
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "hours since   1999-12-31", "_FillValue": 123})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 34.0μs -> 32.2μs (5.78% faster)


def test_edge_fillvalue_is_none():
    # _FillValue is explicitly set to None, should use np.nan
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "days", "_FillValue": None})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 26.9μs -> 24.6μs (9.28% faster)


def test_edge_fillvalue_is_nan():
    # _FillValue is np.nan, should use np.nan
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "days", "_FillValue": np.nan})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 26.4μs -> 23.4μs (12.7% faster)


def test_edge_units_is_integer():
    # Units as integer should not be time-like
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": 123, "_FillValue": 0})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 3.66μs -> 2.72μs (34.5% faster)


def test_edge_units_is_empty_string():
    # Units as empty string should not be time-like
    arr = np.array([1, np.iinfo(np.int64).min, 3], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "", "_FillValue": 0})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 3.44μs -> 2.55μs (34.9% faster)


# ------------------- Large Scale Test Cases -------------------


def test_large_scale_all_min_values():
    # Large array, all values are np.iinfo(np.int64).min
    arr = np.full(1000, np.iinfo(np.int64).min, dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "seconds", "_FillValue": 111})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 25.0μs -> 21.7μs (15.1% faster)


def test_large_scale_no_min_values():
    # Large array, no values are np.iinfo(np.int64).min
    arr = np.arange(1000, dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "minutes", "_FillValue": -1})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 24.1μs -> 19.5μs (23.7% faster)


def test_large_scale_some_min_values():
    # Large array, some values are np.iinfo(np.int64).min
    arr = np.arange(1000, dtype=np.int64)
    arr[100] = np.iinfo(np.int64).min
    arr[999] = np.iinfo(np.int64).min
    var = DummyVar(arr, attrs={"units": "days", "_FillValue": 42})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 26.4μs -> 24.2μs (9.26% faster)


def test_large_scale_non_time_like():
    # Large array, units not time-like
    arr = np.full(1000, np.iinfo(np.int64).min, dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "kilograms", "_FillValue": 999})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 3.81μs -> 2.79μs (36.6% faster)


def test_large_scale_float_dtype():
    # Large array, float dtype
    arr = np.full(1000, float(np.iinfo(np.int64).min), dtype=np.float64)
    var = DummyVar(arr, attrs={"units": "days", "_FillValue": -1})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 1.27μs -> 865ns (46.8% faster)


def test_large_scale_empty_array():
    # Large scale edge: empty array
    arr = np.array([], dtype=np.int64)
    var = DummyVar(arr, attrs={"units": "days", "_FillValue": -1})
    codeflash_output = _maybe_prepare_times(var)
    result = codeflash_output  # 23.2μs -> 18.2μs (27.6% faster)


# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
⏪ Replay Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
test_pytest_xarrayteststest_concat_py_xarrayteststest_computation_py_xarrayteststest_formatting_py_xarray__replay_test_0.py::test_xarray_backends_netcdf3__maybe_prepare_times 504μs 443μs 13.7%✅

To edit these changes git checkout codeflash/optimize-_maybe_prepare_times-mi9r5k4c and push.

Codeflash Static Badge

The optimized code achieves a **14% speedup** through three key optimizations that reduce computational overhead in data processing pipelines:

**1. Set-based Lookup Optimization in `_is_time_like()`**
- Replaced the list `time_strings` with a module-level set `_TIME_STRINGS_SET`
- Changed `any(tstr == units for tstr in time_strings)` to `units in _TIME_STRINGS_SET`
- This converts O(n) linear search to O(1) hash lookup, eliminating the 137.6μs bottleneck visible in line profiling (reduced to 21.9μs)
- The set is created once at module load instead of recreating the list on every function call

**2. Precomputed Constants in `_maybe_prepare_times()`** 
- Moved `np.iinfo(np.int64).min` computation to module-level constant `_INT64_MIN`
- This eliminates repeated expensive numpy introspection calls, reducing the comparison line from 616.7μs to 314.5μs
- Cached `var.attrs` reference to avoid repeated attribute access

**3. Optimized Conditional Logic**
- Restructured the fill value retrieval to only call `attrs.get("_FillValue", np.nan)` when actually needed (inside the mask check)
- This reduces unnecessary dictionary lookups when no replacement is required

**Performance Impact Analysis:**
The optimizations are particularly effective for:
- **Non-time-like units** (36-43% faster): Quick rejection via set lookup instead of expensive list iteration
- **Time-like units without replacement** (23-31% faster): Benefits from precomputed constants and reduced attribute access
- **Large arrays** (15-28% faster): Constant-time improvements scale well with data size

**Hot Path Context:**
Given that `_maybe_prepare_times()` is called from `encode_nc3_variable()` in NetCDF encoding workflows, these micro-optimizations compound significantly when processing large datasets or many variables. The function processes integer arrays to handle sentinel values, making it critical in data serialization pipelines where every millisecond matters.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 November 22, 2025 03:51
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Nov 22, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant