Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/linux.yml
Original file line number Diff line number Diff line change
Expand Up @@ -379,7 +379,7 @@ jobs:
matrix:
build-type: [Release]
needs: [ openvino_download, genai_build_cmake ]
timeout-minutes: 10
timeout-minutes: 30
defaults:
run:
shell: bash
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/mac.yml
Original file line number Diff line number Diff line change
Expand Up @@ -318,7 +318,7 @@ jobs:
matrix:
build-type: [Release]
needs: [ openvino_download, genai_build_cmake ]
timeout-minutes: 10
timeout-minutes: 30
defaults:
run:
shell: bash
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/windows.yml
Original file line number Diff line number Diff line change
Expand Up @@ -487,7 +487,7 @@ jobs:
matrix:
build-type: [Release, Debug]
needs: [ openvino_download, genai_build_cpack ]
timeout-minutes: 10
timeout-minutes: 30
defaults:
run:
shell: pwsh
Expand Down
44 changes: 44 additions & 0 deletions samples/cpp/visual_language_chat/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,12 @@
# Copyright (C) 2023-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

if (MSVC)
set(CMAKE_MSVC_RUNTIME_LIBRARY "MultiThreaded$<$<CONFIG:Debug>:Debug>")
endif()

set(BUILD_SHARED_LIBS ON)

find_package(OpenVINOGenAI REQUIRED
PATHS
"${CMAKE_BINARY_DIR}" # Reuse the package from the build.
Expand Down Expand Up @@ -55,3 +61,41 @@ install(TARGETS benchmark_vlm
RUNTIME DESTINATION samples_bin/
COMPONENT samples_bin
EXCLUDE_FROM_ALL)


include(FetchContent)
FetchContent_Declare(
opencv
GIT_REPOSITORY https://github.com/opencv/opencv.git
GIT_TAG 4.11.0
GIT_SHALLOW TRUE
GIT_PROGRESS TRUE
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do we need git related progress logs in CMake output?

)
FetchContent_MakeAvailable(opencv)


add_executable(video_to_text_chat video_to_text_chat.cpp)

target_include_directories(video_to_text_chat PRIVATE
${OPENCV_CONFIG_FILE_INCLUDE_DIR}
${OPENCV_MODULE_opencv_core_LOCATION}/include
${OPENCV_MODULE_opencv_videoio_LOCATION}/include
)
target_link_libraries(video_to_text_chat opencv_core opencv_videoio openvino::genai cxxopts::cxxopts)

set_target_properties(video_to_text_chat PROPERTIES
INSTALL_RPATH "\$ORIGIN/lib"
BUILD_RPATH "\$ORIGIN/lib"
# Ensure out of box LC_RPATH on macOS with SIP
INSTALL_RPATH_USE_LINK_PATH ON)

install(TARGETS video_to_text_chat
RUNTIME DESTINATION samples_bin/
COMPONENT samples_bin
EXCLUDE_FROM_ALL)


install(DIRECTORY ${opencv_BINARY_DIR}/lib/
DESTINATION samples_bin/
COMPONENT samples_bin
EXCLUDE_FROM_ALL)
18 changes: 15 additions & 3 deletions samples/cpp/visual_language_chat/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,9 @@
This example showcases inference of Visual language models (VLMs). The application doesn't have many configuration options to encourage the reader to explore and modify the source code. For example, change the device for inference to GPU. The sample features `ov::genai::VLMPipeline` and runs the simplest deterministic greedy sampling algorithm. There is also a Jupyter [notebook](https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/minicpm-v-multimodal-chatbot) which provides an example of Visual-language assistant.


There are two sample files:
There are three sample files:
- [`visual_language_chat.cpp`](./visual_language_chat.cpp) demonstrates basic usage of the VLM pipeline.
- [`video_to_text_chat.cpp`](./video_to_text_chat.cpp) demonstrates video to text usage of the VLM pipeline.
- [`benchmark_vlm.cpp`](./benchmark_vlm.cpp) shows how to benchmark a VLM in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text and calculating various performance metrics.


Expand All @@ -19,9 +20,9 @@ pip install --upgrade-strategy eager -r ../../requirements.txt
optimum-cli export openvino --model openbmb/MiniCPM-V-2_6 --trust-remote-code MiniCPM-V-2_6
```

## Run
Follow [Get Started with Samples](https://docs.openvino.ai/2025/get-started/learn-openvino/openvino-samples/get-started-demos.html) to run samples.

Follow [Get Started with Samples](https://docs.openvino.ai/2025/get-started/learn-openvino/openvino-samples/get-started-demos.html) to run the sample.
## Run image-to-text chat sample:

[This image](https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11) can be used as a sample image.

Expand All @@ -31,6 +32,17 @@ Discrete GPUs (dGPUs) usually provide better performance compared to CPUs. It is

Refer to the [Supported Models](https://openvinotoolkit.github.io/openvino.genai/docs/supported-models/#visual-language-models-vlms) for more details.


## Run video-to-text chat sample:

A model that supports video input is required to run this sample, for example `llava-hf/LLaVA-NeXT-Video-7B-hf`.

[This video](https://huggingface.co/datasets/raushan-testing-hf/videos-test/resolve/main/sample_demo_1.mp4) can be used as a sample video.

`video_to_text_chat ./LLaVA-NeXT-Video-7B-hf/ sample_demo_1.mp4`

Supported models with video input are listed in [this section](https://openvinotoolkit.github.io/openvino.genai/docs/use-cases/image-processing/#use-image-or-video-tags-in-prompt).

## Run benchmark:

```sh
Expand Down
126 changes: 126 additions & 0 deletions samples/cpp/visual_language_chat/video_to_text_chat.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
// Copyright (C) 2025 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include <openvino/genai/visual_language/pipeline.hpp>
#include <opencv2/core.hpp>
#include <opencv2/videoio.hpp>
#include <iostream>
#include <filesystem>

namespace fs = std::filesystem;

std::vector<size_t> make_indices(size_t total_frames, size_t num_frames) {
std::vector<size_t> indices;
indices.reserve(num_frames);

auto step = float(total_frames) / num_frames;

for (size_t i = 0; i < num_frames; ++i) {
size_t idx = std::min(size_t(i * step), total_frames - 1);
indices.push_back(idx);
}

return indices;
}

ov::Tensor load_video(const std::filesystem::path& video_path, size_t num_frames = 8) {
cv::VideoCapture cap(video_path.string());

if (!cap.isOpened()) {
OPENVINO_THROW("Could not open the video file.");
}
size_t total_num_frames = cap.get(cv::CAP_PROP_FRAME_COUNT);
auto indices = make_indices(total_num_frames, num_frames);

std::vector<cv::Mat> frames;
cv::Mat frame;
size_t width = cap.get(cv::CAP_PROP_FRAME_WIDTH);
size_t height = cap.get(cv::CAP_PROP_FRAME_HEIGHT);
ov::Tensor video_tensor(ov::element::u8, ov::Shape{num_frames, height, width, 3});
auto video_tensor_data = video_tensor.data<uint8_t>();

size_t frame_idx = 0;
while (cap.read(frame)) {
OPENVINO_ASSERT(frame.cols == width && frame.rows == height && frame.channels() == 3);
if (std::find(indices.begin(), indices.end(), frame_idx) != indices.end()) {
memcpy(video_tensor_data, frame.data, frame.total() * 3 * sizeof(uint8_t));
video_tensor_data += frame.total() * 3;
}
frame_idx++;
}
OPENVINO_ASSERT(frame_idx == total_num_frames);

return video_tensor;
}

std::vector<ov::Tensor> load_videos(const std::filesystem::path& input_path) {
if (input_path.empty() || !fs::exists(input_path)) {
throw std::runtime_error{"Path to images is empty or does not exist."};
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's use OPENVINO_THROW

}
if (fs::is_directory(input_path)) {
std::set<fs::path> sorted_videos{fs::directory_iterator(input_path), fs::directory_iterator()};
std::vector<ov::Tensor> videos;
for (const fs::path& dir_entry : sorted_videos) {
videos.push_back(load_video(dir_entry));
}
return videos;
}
return {load_video(input_path)};
}

bool print_subword(std::string&& subword) {
return !(std::cout << subword << std::flush);
}

int main(int argc, char* argv[]) try {
if (argc < 3 || argc > 4) {
throw std::runtime_error(std::string{"Usage "} + argv[0] + " <MODEL_DIR> <VIDEO_FILE OR DIR_WITH_VIDEOS> <DEVICE>");
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's use OPENVINO_THROW

}

std::vector<ov::Tensor> videos = load_videos(argv[2]);

// GPU and NPU can be used as well.
// Note: If NPU is selected, only language model will be run on NPU
std::string device = (argc == 4) ? argv[3] : "CPU";
ov::AnyMap enable_compile_cache;
if (device == "GPU") {
// Cache compiled models on disk for GPU to save time on the
// next run. It's not beneficial for CPU.
enable_compile_cache.insert({ov::cache_dir("vlm_cache")});
}
ov::genai::VLMPipeline pipe(argv[1], device, enable_compile_cache);

ov::genai::GenerationConfig generation_config;
generation_config.max_new_tokens = 100;

std::string prompt;

pipe.start_chat();
std::cout << "question:\n";

std::getline(std::cin, prompt);
pipe.generate(prompt,
ov::genai::videos(videos),
ov::genai::generation_config(generation_config),
ov::genai::streamer(print_subword));
std::cout << "\n----------\n"
"question:\n";
while (std::getline(std::cin, prompt)) {
pipe.generate(prompt,
ov::genai::generation_config(generation_config),
ov::genai::streamer(print_subword));
std::cout << "\n----------\n"
"question:\n";
}
pipe.finish_chat();
} catch (const std::exception& error) {
try {
std::cerr << error.what() << '\n';
} catch (const std::ios_base::failure&) {}
return EXIT_FAILURE;
} catch (...) {
try {
std::cerr << "Non-exception object thrown\n";
} catch (const std::ios_base::failure&) {}
return EXIT_FAILURE;
}
1 change: 1 addition & 0 deletions samples/deployment-requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,4 @@ librosa==0.11.0 # For Whisper
pillow==12.0.0 # Image processing for VLMs
json5==0.12.1 # For ReAct
pydantic==2.12.5 # For Structured output json schema
opencv-python==4.12.0.88 # For video-to-text VLM sample
22 changes: 16 additions & 6 deletions samples/python/visual_language_chat/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,9 @@

This example showcases inference of text-generation Vision Language Models (VLMs): `miniCPM-V-2_6` and other models with the same signature. The application doesn't have many configuration options to encourage the reader to explore and modify the source code. For example, change the device for inference to GPU. The sample features `openvino_genai.VLMPipeline` and configures it for the chat scenario. There is also a Jupyter [notebook](https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/minicpm-v-multimodal-chatbot) which provides an example of Visual-language assistant.

There are two sample files:
There are three sample files:
- [`visual_language_chat.py`](./visual_language_chat.py) demonstrates basic usage of the VLM pipeline.
- [`video_to_text_chat.py`](./video_to_text_chat.py) demonstrates video to text usage of the VLM pipeline.
- [`benchmark_vlm.py`](./benchmark_vlm.py) shows how to benchmark a VLM in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text and calculating various performance metrics.

## Download and convert the model and tokenizers
Expand Down Expand Up @@ -38,20 +39,29 @@ tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM-V-2_6")
export_tokenizer(tokenizer, output_dir)
```

## Run:
Install [deployment-requirements.txt](../../deployment-requirements.txt) via `pip install -r ../../deployment-requirements.txt` to run VLM samples.

[This image](https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11) can be used as a sample image.
## Run image-to-text chat sample:

Install [deployment-requirements.txt](../../deployment-requirements.txt) via `pip install -r ../../deployment-requirements.txt` and then, run a sample:
[This image](https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11) can be used as a sample image.

`python visual_language_chat.py ./miniCPM-V-2_6/ 319483352-d5fbbd1a-d484-415c-88cb-9986625b7b11.jpg`

See https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md#supported-models for the list of supported models.

## Run video-to-text chat sample:

A model that supports video input is required to run this sample, for example `llava-hf/LLaVA-NeXT-Video-7B-hf`.

[This video](https://huggingface.co/datasets/raushan-testing-hf/videos-test/resolve/main/sample_demo_1.mp4) can be used as a sample video.

`python video_to_text_chat.py ./LLaVA-NeXT-Video-7B-hf/ sample_demo_1.mp4`

Supported models with video input are listed in [this section](https://openvinotoolkit.github.io/openvino.genai/docs/use-cases/image-processing/#use-image-or-video-tags-in-prompt).

Discrete GPUs (dGPUs) usually provide better performance compared to CPUs. It is recommended to run larger models on a dGPU with 32GB+ RAM. # TODO: examples of larger models
Modify the source code to change the device for inference to the GPU.

See https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md#supported-models for the list of supported models.

## Run benchmark:

```sh
Expand Down
Loading
Loading