-
Notifications
You must be signed in to change notification settings - Fork 4
Extending Coordinate Objects to High‐Dimensional Phase Spaces and Poisson Brackets
In classical mechanics and modern physics, phase spaces are fundamental for describing system states. For an n-degree-of-freedom system: - Phase space is 2n-dimensional (n generalized coordinates qᵢ and n conjugate momenta pᵢ) - Requires extension beyond traditional 3D coordinates to support: - Symplectic geometry (preserving ω = ∑ᵢ dqᵢ ∧ dpᵢ) - Poisson bracket calculations: {F,G} = ∑ᵢ (∂F/∂qᵢ ∂G/∂pᵢ - ∂F/∂pᵢ ∂G/∂qᵢ) - Hamiltonian dynamics representation
struct phase_coord {
std::vector<vec> q_basis; // Generalized coordinate basis (n-dim)
std::vector<vec> p_basis; // Conjugate momentum basis (n-dim)
vec origin; // Origin point (2n-dim)
vec scaling; // Scaling factors (2n-dim)
};Multiplication (Coordinate Composition):
phase_coord operator*(const phase_coord& c1, const phase_coord& c2) {
phase_coord result;
for (int i = 0; i < n; ++i) {
result.q_basis[i] = c1.q_basis[i] * c2.q_basis[i]
- c1.p_basis[i] * c2.q_basis[i+n];
result.p_basis[i] = c1.q_basis[i] * c2.p_basis[i]
+ c1.p_basis[i] * c2.p_basis[i+n];
}
return result;
}Division (Coordinate Projection):
phase_coord operator/(const phase_coord& c1, const phase_coord& c2) {
// Returns c1 * inv(c2) preserving symplectic structure
...
}double poisson_bracket(const vec& dF, const vec& dG) {
vec J_dG = symplectic_matrix * dG; // J = [0 I; -I 0]
return dot_product(dF, J_dG);
}Example (Angular Momentum):
phase_coord Lx, Ly, Lz;
double Lz_val = poisson_bracket(Lx / current_coord, Ly / current_coord);
// Satisfies {Lx, Ly} ≈ LzInitialization:
phase_coord harm_coord;
harm_coord.q_basis = {vec(1,0), vec(0,1)}; // q1, q2 bases
harm_coord.p_basis = {vec(0,1), vec(-1,0)}; // p1, p2 bases (ω(qi,pj)=δᵢⱼ)Time Evolution:
double H = 0.5 * (q1*q1 + p1*p1); // Hamiltonian
vec dH = H / harm_coord;
vec dA = A / harm_coord;
double dA_dt = poisson_bracket(dA, dH); // Time derivativeKey advantages of this approach:
-
Unifies physics and geometry through coordinate operations
-
Simplifies implementation via operator overloading
-
Broad applicability across classical/quantum systems
The core idea is representing physics through programmable geometric operations, making advanced concepts more accessible for computational implementation.