Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions doc/ensemble.rst
Original file line number Diff line number Diff line change
Expand Up @@ -97,8 +97,7 @@ Several methods taking advantage of boosting have been designed.
a boosting iteration :cite:`seiffert2009rusboost`::

>>> from imblearn.ensemble import RUSBoostClassifier
>>> rusboost = RUSBoostClassifier(n_estimators=200, algorithm='SAMME.R',
... random_state=0)
>>> rusboost = RUSBoostClassifier(n_estimators=200, random_state=0)
>>> rusboost.fit(X_train, y_train)
RUSBoostClassifier(...)
>>> y_pred = rusboost.predict(X_test)
Expand Down
8 changes: 7 additions & 1 deletion examples/ensemble/plot_comparison_ensemble_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -194,10 +194,16 @@

# %%
from sklearn.ensemble import AdaBoostClassifier
from sklearn.utils.fixes import parse_version

from imblearn.ensemble import EasyEnsembleClassifier, RUSBoostClassifier
from imblearn.utils._sklearn_compat import sklearn_version

if sklearn_version < parse_version("1.6"):
estimator = AdaBoostClassifier(n_estimators=10, algorithm="SAMME")
else:
estimator = AdaBoostClassifier(n_estimators=10)

estimator = AdaBoostClassifier(n_estimators=10, algorithm="SAMME")
eec = EasyEnsembleClassifier(n_estimators=10, estimator=estimator)
eec.fit(X_train, y_train)
y_pred_eec = eec.predict(X_test)
Expand Down
6 changes: 4 additions & 2 deletions imblearn/ensemble/_easy_ensemble.py
Original file line number Diff line number Diff line change
Expand Up @@ -226,12 +226,14 @@ def _validate_y(self, y):
self._sampling_strategy = self.sampling_strategy
return y_encoded

def _validate_estimator(self, default=AdaBoostClassifier(algorithm="SAMME")):
def _validate_estimator(self, default=None):
"""Check the estimator and the n_estimator attribute, set the
`estimator_` attribute."""
if self.estimator is not None:
estimator = clone(self.estimator)
else:
if default is None:
default = self._get_estimator()
estimator = clone(default)

sampler = RandomUnderSampler(
Expand Down Expand Up @@ -279,7 +281,7 @@ def base_estimator_(self):

def _get_estimator(self):
if self.estimator is None:
if parse_version("1.4") <= sklearn_version < parse_version("1.6"):
if sklearn_version < parse_version("1.6"):
return AdaBoostClassifier(algorithm="SAMME")
else:
return AdaBoostClassifier()
Expand Down
25 changes: 19 additions & 6 deletions imblearn/metrics/_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,10 +25,11 @@
from sklearn.metrics._classification import _check_targets, _prf_divide
from sklearn.preprocessing import LabelEncoder
from sklearn.utils._param_validation import Interval, StrOptions
from sklearn.utils.fixes import parse_version
from sklearn.utils.multiclass import unique_labels
from sklearn.utils.validation import check_consistent_length, column_or_1d

from ..utils._sklearn_compat import validate_params
from ..utils._sklearn_compat import sklearn_version, validate_params


@validate_params(
Expand Down Expand Up @@ -166,7 +167,12 @@ def sensitivity_specificity_support(
if average not in average_options and average != "binary":
raise ValueError("average has to be one of " + str(average_options))

y_type, y_true, y_pred = _check_targets(y_true, y_pred)
if sklearn_version >= parse_version("1.8"):
y_type, y_true, y_pred, sample_weight = _check_targets(
y_true, y_pred, sample_weight
)
else:
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
present_labels = unique_labels(y_true, y_pred)

if average == "binary":
Expand Down Expand Up @@ -1119,11 +1125,18 @@ def macro_averaged_mean_absolute_error(y_true, y_pred, *, sample_weight=None):
>>> macro_averaged_mean_absolute_error(y_true_imbalanced, y_pred)
0.16...
"""
_, y_true, y_pred = _check_targets(y_true, y_pred)
if sample_weight is not None:
sample_weight = column_or_1d(sample_weight)
if sklearn_version >= parse_version("1.8"):
_, y_true, y_pred, sample_weight = _check_targets(
y_true, y_pred, sample_weight
)
if sample_weight is None:
sample_weight = np.ones(y_true.shape)
else:
sample_weight = np.ones(y_true.shape)
_, y_true, y_pred = _check_targets(y_true, y_pred)
if sample_weight is not None:
sample_weight = column_or_1d(sample_weight)
else:
sample_weight = np.ones(y_true.shape)
check_consistent_length(y_true, y_pred, sample_weight)
labels = unique_labels(y_true, y_pred)
mae = []
Expand Down