Releases: tinyms-ai/tinyms
v0.3.2
v0.3.1
Released 2021-01-28.
Major Features and Improvements
- Upgrade the version of
mindsporemodule dependencies tov1.6.0to support running model in Linux Ubuntu 18.04, Window 10 and Mac environment. #126 #127 #136 #142 - Updated the docker image, the
quickstartdoc and thequickstart_in_one_minutetutorial to users. #123 #130 #138 #140
Model Park
- Add 1 model support:
DeepFM. #125
API Change
None
Backwards Incompatible Change
None
Bug fixes
- Fixed the bug of the bert model. #122
Contributors
Great thanks go to these wonderful people:
@kaierlong,@hellowaywewe, @hannibalhuang, @huxiaoman7, @lwdragon, @xinwenh
v0.3.0
Released 2021-12-31.
Major Features and Improvements
- Updated test use cases for
test_transformsmodule. #109 - Upgrade the version of
mindsporemodule dependencies fromv1.2.0tov1.5.0. #103 #107 #118 - Refactor the
vision/transformsmodule to make it configure parameters flexibly. #113 - Added the the front and back ends modules to implement the Web UI reasoning visualization feature. #104 #105 #106 #107 #108 #110 #111
- Combined with OpenCV to add
appmodule to support object detection visualization to make reasoning intuitive. #114 - Added
test/st/app/object_detectionsystem test module to provide static image detection and video image detection dynamically collected by cameras. #115 #116 - Added Nginx version container to make Web UI reasoning visualization module deploy and use easily. #120
Model Park
- None
API Change
- Add a new interface to get specified vision transform parameters from the transform YAML file.
| v0.3.0 |
from tinyms.vision.transform_config import get_specified_config
configs = get_specified_config(transforms_op='DatasetTransform', yaml_path=None) |
- Add shanshui dataset transform class to process shanshui dataset.
| v0.3.0 |
from tinyms.vision import ShanshuiTransform
shanshui_transform = ShanshuiTransform()
img = Image.open('shanshui_example.jpg')
img = shanshui_transform(img) |
-
Add
predict_webmethod in the serving/server module to provide back-end reasoning function for the request/predictfrom the web front end page. -
Add object detection model reasoning visualization module, there are too many new methods to list one by one, please find them in API Documentation
tinyms.appmenu.
For the detailed API changes, please find TinyMS Python API in API Documentation.
Backwards Incompatible Change
None
Bug fixes
- Fixed the Linux server startup error of the
serving/servermodule in previous versions. #102
Contributors
Great thanks go to these wonderful people:
@zjuter0126, @Mickls, @leonwanghui, @hannibalhuang, @hellowaywewe, @huxiaoman7
v0.2.1
v0.2.0
Released 2021-06-07.
Major Features and Improvements
- Add
textmodule to provide the basic dataset loading and preprocessing in NLP scenarios. #53 #73 - Upgrade the version of
mindsporemodule dependencies fromv1.1.1tov1.2.0. #81 #84 - Refactor the
ClientandServercommunication interface inservingmodule. #76 - Added server_path, start FlaskServer and add host and port parameters. #77
- Implement TinyMS
hubmodule to enable loading lots of pre-trained models, incluidnglenet5_v1,resnet50_v1,alexnet_v1,vgg16_v1,mobilenet_v2andssd300_v1. #86 #93 - Publish the TinyMS Hub contributing guidelines in public to welcome pre-trained model from the comunity. #91
- Refactor the model network entrypoint method to provide the unified interface. #85
Model Park
API Change
- Refactor the
servingentrypoint function withClientandServerclass interface.
| v0.1.0 | v0.2.0 |
from tinyms.serving import start_server, server_started, list_servables, predict, shutdown
start_server()
if server_started():
list_servables()
predict('example.jpg', 'servable_name', dataset_name='mnist')
shutdown() |
from tinyms.serving import Client, Server
server = Server()
server.start_server()
client = Client()
client.list_servables()
client.predict('example.jpg', 'servable_name', dataset_name='mnist')
server.shutdown() |
- Add a new interface load in model module to support load MindIR graph directly to perform model inference operation.
| v0.2.0 |
>>> import tinyms as ts
>>> import tinyms.layers as layers
>>> from tinyms.model import Model, load
>>>
>>> net = layers.Conv2d(1, 1, kernel_size=3)
>>> model = Model(net)
>>> input = ts.ones([1, 1, 3, 3])
>>> model.export(input, "net", file_format="MINDIR")
...
>>> net = load("net.mindir")
>>> print(net(input))
[[[[ 0.02548009 0.04010789 0.03120251]
[ 0.00268656 0.02353744 0.03807815]
[-0.00896441 -0.00303641 0.01502199]]]] |
- Add
hub.loadmethod to easily load pretrained model and apply model evaluation and inference operation.
| v0.2.0 |
from PIL import Image
from tinyms import hub
from tinyms.vision import mnist_transform
from tinyms.model import Model
img = Image.open(img_path)
img = mnist_transform(img)
# load LeNet5 pretrained model
net= hub.load('tinyms/0.2/lenet5_v1_mnist', class_num=10)
model = Model(net)
res = model.predict(ts.expand_dims(ts.array(img), 0)).asnumpy()
print("The label is:", mnist_transform.postprocess(res)) |
For the detailed API changes, please find TinyMS Python API in API Documentation.
Backwards Incompatible Change
None
Bug fixes
- Fix some bugs when serving in Windows operating system. #74
- Set
batch_normasTrueby default in VGG16 to fix the converge problem of accuracy. #90
Contributors
Great thanks go to these wonderful people:
@zjuter0126, @Mickls, @leonwanghui, @hannibalhuang, @hellowaywewe, @huxiaoman7
v0.1.0
Released 2021-03-28.
Major Features and Improvements
- Design the overall framework of TinyMS development toolkit. #3 #5 #12 #13
- Support install TinyMS binary in
Linux Ubuntu 18.04andWindow 10environment, also provide TinyMS docker image to users. #2 #45 - Enable document auto-generation using Sphinx. #35
- Provide several end to end model development and deployment tutorials for machine learning beginners. #11 #24 #26 #34
- Set up the initial CI pipeline (including cla-assistant, GitHub Actions, readthedocs) for TinyMS project. #1 #49 #50
Model Park
API Change
There is no API change for the first version of TinyMS. Please find TinyMS Python API in API Documentation.
Backwards Incompatible Change
None
Bug fixes
None
Contributors
Great thanks go to these wonderful people:
@leonwanghui, @lyd911, @hannibalhuang, @hellowaywewe, @Yikun, @huxiaoman7