Skip to content
Open
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions samples/cpp/visual_language_chat/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -55,3 +55,24 @@ install(TARGETS benchmark_vlm
RUNTIME DESTINATION samples_bin/
COMPONENT samples_bin
EXCLUDE_FROM_ALL)


include(FetchContent)
FetchContent_Declare(
opencv
GIT_REPOSITORY https://github.com/opencv/opencv.git
GIT_TAG 4.12.0
GIT_SHALLOW TRUE
GIT_PROGRESS TRUE
)
FetchContent_MakeAvailable(opencv)


add_executable(video_to_text_chat video_to_text_chat.cpp)

target_include_directories(video_to_text_chat PRIVATE
${OPENCV_CONFIG_FILE_INCLUDE_DIR}
${OPENCV_MODULE_opencv_core_LOCATION}/include
${OPENCV_MODULE_opencv_videoio_LOCATION}/include
)
target_link_libraries(video_to_text_chat opencv_core opencv_videoio openvino::genai cxxopts::cxxopts)
18 changes: 15 additions & 3 deletions samples/cpp/visual_language_chat/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,9 @@
This example showcases inference of Visual language models (VLMs). The application doesn't have many configuration options to encourage the reader to explore and modify the source code. For example, change the device for inference to GPU. The sample features `ov::genai::VLMPipeline` and runs the simplest deterministic greedy sampling algorithm. There is also a Jupyter [notebook](https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/minicpm-v-multimodal-chatbot) which provides an example of Visual-language assistant.


There are two sample files:
There are three sample files:
- [`visual_language_chat.cpp`](./visual_language_chat.cpp) demonstrates basic usage of the VLM pipeline.
- [`video_to_text_chat.cpp`](./video_to_text_chat.cpp) demonstrates video to text usage of the VLM pipeline.
- [`benchmark_vlm.cpp`](./benchmark_vlm.cpp) shows how to benchmark a VLM in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text and calculating various performance metrics.


Expand All @@ -19,9 +20,9 @@ pip install --upgrade-strategy eager -r ../../requirements.txt
optimum-cli export openvino --model openbmb/MiniCPM-V-2_6 --trust-remote-code MiniCPM-V-2_6
```

## Run
Follow [Get Started with Samples](https://docs.openvino.ai/2025/get-started/learn-openvino/openvino-samples/get-started-demos.html) to run samples.

Follow [Get Started with Samples](https://docs.openvino.ai/2025/get-started/learn-openvino/openvino-samples/get-started-demos.html) to run the sample.
## Run visual language chat:

[This image](https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11) can be used as a sample image.

Expand All @@ -31,6 +32,17 @@ Discrete GPUs (dGPUs) usually provide better performance compared to CPUs. It is

Refer to the [Supported Models](https://openvinotoolkit.github.io/openvino.genai/docs/supported-models/#visual-language-models-vlms) for more details.


## Run video to text chat:

To run this sample a model that supports video input is required, for example `llava-hf/LLaVA-NeXT-Video-7B-hf`.

[This video](https://huggingface.co/datasets/raushan-testing-hf/videos-test/resolve/main/sample_demo_1.mp4) can be used as a sample video.

`video_to_text_chat ./LLaVA-NeXT-Video-7B-hf/ sample_demo_1.mp4`

Supported models with video input are listed in [this section](https://openvinotoolkit.github.io/openvino.genai/docs/use-cases/image-processing/#use-image-or-video-tags-in-prompt).

## Run benchmark:

```sh
Expand Down
124 changes: 124 additions & 0 deletions samples/cpp/visual_language_chat/video_to_text_chat.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include <openvino/genai/visual_language/pipeline.hpp>
#include <opencv2/core.hpp>
#include <opencv2/videoio.hpp>
#include <iostream>
#include <filesystem>

namespace fs = std::filesystem;

std::vector<size_t> make_indices(size_t total_frames, size_t num_frames) {
std::vector<size_t> indices;
indices.reserve(num_frames);

auto step = float(total_frames) / num_frames;

for (size_t i = 0; i < num_frames; ++i) {
size_t idx = std::min(size_t(i * step), total_frames - 1);
indices.push_back(idx);
}

return indices;
}

ov::Tensor load_video(const std::filesystem::path& video_path, size_t num_frames = 10) {
cv::VideoCapture cap(video_path.string());

if (!cap.isOpened()) {
OPENVINO_THROW("Could not open the video file.");
}
size_t total_num_frames = cap.get(cv::CAP_PROP_FRAME_COUNT);
auto indices = make_indices(total_num_frames, num_frames);

std::vector<cv::Mat> frames;
cv::Mat frame;
size_t width = cap.get(cv::CAP_PROP_FRAME_WIDTH);
size_t height = cap.get(cv::CAP_PROP_FRAME_HEIGHT);
ov::Tensor video_tensor(ov::element::u8, ov::Shape{num_frames, height, width, 3});
auto video_tensor_data = video_tensor.data<uint8_t>();

size_t frame_idx = 0;
while (cap.read(frame)) {
if (std::find(indices.begin(), indices.end(), frame_idx) != indices.end()) {
memcpy(video_tensor_data, frame.data, frame.total() * 3 * sizeof(uint8_t));
video_tensor_data += frame.total() * 3;
}
frame_idx++;
}

return video_tensor;
}

std::vector<ov::Tensor> load_videos(const std::filesystem::path& input_path) {
if (input_path.empty() || !fs::exists(input_path)) {
throw std::runtime_error{"Path to images is empty or does not exist."};
}
if (fs::is_directory(input_path)) {
std::set<fs::path> sorted_videos{fs::directory_iterator(input_path), fs::directory_iterator()};
std::vector<ov::Tensor> videos;
for (const fs::path& dir_entry : sorted_videos) {
videos.push_back(load_video(dir_entry));
}
return videos;
}
return {load_video(input_path)};
}

bool print_subword(std::string&& subword) {
return !(std::cout << subword << std::flush);
}

int main(int argc, char* argv[]) try {
if (argc < 3 || argc > 4) {
throw std::runtime_error(std::string{"Usage "} + argv[0] + " <MODEL_DIR> <VIDEO_FILE OR DIR_WITH_VIDEOS> <DEVICE>");
}

std::vector<ov::Tensor> videos = load_videos(argv[2]);

// GPU and NPU can be used as well.
// Note: If NPU is selected, only language model will be run on NPU
std::string device = (argc == 4) ? argv[3] : "CPU";
ov::AnyMap enable_compile_cache;
if (device == "GPU") {
// Cache compiled models on disk for GPU to save time on the
// next run. It's not beneficial for CPU.
enable_compile_cache.insert({ov::cache_dir("vlm_cache")});
}
ov::genai::VLMPipeline pipe(argv[1], device, enable_compile_cache);

ov::genai::GenerationConfig generation_config;
generation_config.max_new_tokens = 100;

std::string prompt;

pipe.start_chat();
std::cout << "question:\n";

std::getline(std::cin, prompt);
pipe.generate(prompt,
ov::genai::videos(videos),
ov::genai::generation_config(generation_config),
ov::genai::streamer(print_subword));
std::cout << "\n----------\n"
"question:\n";
while (std::getline(std::cin, prompt)) {
pipe.generate(prompt,
ov::genai::generation_config(generation_config),
ov::genai::streamer(print_subword));
std::cout << "\n----------\n"
"question:\n";
}
pipe.finish_chat();
} catch (const std::exception& error) {
try {
std::cerr << error.what() << '\n';
} catch (const std::ios_base::failure&) {}
return EXIT_FAILURE;
} catch (...) {
try {
std::cerr << "Non-exception object thrown\n";
} catch (const std::ios_base::failure&) {}
return EXIT_FAILURE;
}
1 change: 1 addition & 0 deletions samples/deployment-requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,4 @@ librosa==0.11.0 # For Whisper
pillow==12.0.0 # Image processing for VLMs
json5==0.12.1 # For ReAct
pydantic==2.12.4 # For Structured output json schema
opencv-python # For video-to-text VLM sample
22 changes: 16 additions & 6 deletions samples/python/visual_language_chat/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,9 @@

This example showcases inference of text-generation Vision Language Models (VLMs): `miniCPM-V-2_6` and other models with the same signature. The application doesn't have many configuration options to encourage the reader to explore and modify the source code. For example, change the device for inference to GPU. The sample features `openvino_genai.VLMPipeline` and configures it for the chat scenario. There is also a Jupyter [notebook](https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/minicpm-v-multimodal-chatbot) which provides an example of Visual-language assistant.

There are two sample files:
There are three sample files:
- [`visual_language_chat.py`](./visual_language_chat.py) demonstrates basic usage of the VLM pipeline.
- [`video_to_text_chat.py`](./video_to_text_chat.py) demonstrates video to text usage of the VLM pipeline.
- [`benchmark_vlm.py`](./benchmark_vlm.py) shows how to benchmark a VLM in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text and calculating various performance metrics.

## Download and convert the model and tokenizers
Expand Down Expand Up @@ -38,20 +39,29 @@ tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM-V-2_6")
export_tokenizer(tokenizer, output_dir)
```

## Run:
Install [deployment-requirements.txt](../../deployment-requirements.txt) via `pip install -r ../../deployment-requirements.txt` to run VLM samples.

[This image](https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11) can be used as a sample image.
## Run image-to-text chat sample:

Install [deployment-requirements.txt](../../deployment-requirements.txt) via `pip install -r ../../deployment-requirements.txt` and then, run a sample:
[This image](https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11) can be used as a sample image.

`python visual_language_chat.py ./miniCPM-V-2_6/ 319483352-d5fbbd1a-d484-415c-88cb-9986625b7b11.jpg`

See https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md#supported-models for the list of supported models.

## Run video-to-text chat sample:

To run this sample a model that supports video input is required, for example `llava-hf/LLaVA-NeXT-Video-7B-hf`.

[This video](https://huggingface.co/datasets/raushan-testing-hf/videos-test/resolve/main/sample_demo_1.mp4) can be used as a sample video.

`python video_to_text_chat.py ./LLaVA-NeXT-Video-7B-hf/ sample_demo_1.mp4`

Supported models with video input are listed in [this section](https://openvinotoolkit.github.io/openvino.genai/docs/use-cases/image-processing/#use-image-or-video-tags-in-prompt).

Discrete GPUs (dGPUs) usually provide better performance compared to CPUs. It is recommended to run larger models on a dGPU with 32GB+ RAM. # TODO: examples of larger models
Modify the source code to change the device for inference to the GPU.

See https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md#supported-models for the list of supported models.

## Run benchmark:

```sh
Expand Down
99 changes: 99 additions & 0 deletions samples/python/visual_language_chat/video_to_text_chat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
#!/usr/bin/env python3
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


import argparse
import numpy as np
import cv2
import openvino_genai
from openvino import Tensor
from pathlib import Path


def streamer(subword: str) -> bool:
'''

Args:
subword: sub-word of the generated text.

Returns: Return flag corresponds whether generation should be stopped.

'''
print(subword, end='', flush=True)

# No value is returned as in this example we don't want to stop the generation in this method.
# "return None" will be treated the same as "return openvino_genai.StreamingStatus.RUNNING".


def read_video(path: str, num_frames: int = 10) -> Tensor:
'''

Args:
path: The path to the video.

Returns: the ov.Tensor containing the video.

'''
cap = cv2.VideoCapture(path)

frames = []

while cap.isOpened():
ret, frame = cap.read()
if not ret:
break

frames.append(np.array(frame))

indices = np.arange(0, len(frames), len(frames) / num_frames).astype(int)
frames = [frames[i] for i in indices]

return Tensor(frames)


def read_videos(path: str) -> list[Tensor]:
entry = Path(path)
if entry.is_dir():
return [read_video(str(file)) for file in sorted(entry.iterdir())]
return [read_video(path)]


def main():
parser = argparse.ArgumentParser()
parser.add_argument('model_dir', help="Path to the model directory")
parser.add_argument('video_dir', help="Path to a video file.")
parser.add_argument('device', nargs='?', default='CPU', help="Device to run the model on (default: CPU)")
args = parser.parse_args()

videos = read_videos(args.video_dir)

# GPU and NPU can be used as well.
# Note: If NPU is selected, only the language model will be run on the NPU.
enable_compile_cache = dict()
if args.device == "GPU":
# Cache compiled models on disk for GPU to save time on the next run.
# It's not beneficial for CPU.
enable_compile_cache["CACHE_DIR"] = "vlm_cache"

pipe = openvino_genai.VLMPipeline(args.model_dir, args.device, **enable_compile_cache)

config = openvino_genai.GenerationConfig()
config.max_new_tokens = 100

pipe.start_chat()
prompt = input('question:\n')
pipe.generate(prompt, videos=videos, generation_config=config, streamer=streamer)

while True:
try:
prompt = input("\n----------\n"
"question:\n")
except EOFError:
break
pipe.generate(prompt, generation_config=config, streamer=streamer)
pipe.finish_chat()


if __name__ == '__main__':
main()
7 changes: 6 additions & 1 deletion tests/python_tests/samples/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,6 +143,10 @@
"tiny-random-SpeechT5ForTextToSpeech": {
"name": "hf-internal-testing/tiny-random-SpeechT5ForTextToSpeech",
"convert_args": ["--model-kwargs", json.dumps({"vocoder": "fxmarty/speecht5-hifigan-tiny"})]
},
"tiny-random-llava-next-video": {
"name": "optimum-intel-internal-testing/tiny-random-llava-next-video",
"convert_args": ["--task", "image-text-to-text"]
}
}

Expand All @@ -159,7 +163,8 @@
"cat.png": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png",
"cat": "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11",
"3283_1447_000.tar.gz": "https://huggingface.co/datasets/facebook/multilingual_librispeech/resolve/main/data/mls_polish/train/audio/3283_1447_000.tar.gz",
"cmu_us_awb_arctic-wav-arctic_a0001.bin": "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_awb_arctic-wav-arctic_a0001.bin"
"cmu_us_awb_arctic-wav-arctic_a0001.bin": "https://huggingface.co/datasets/Xenova/cmu-arctic-xvectors-extracted/resolve/main/cmu_us_awb_arctic-wav-arctic_a0001.bin",
"videos/sample_video.mp4": "https://huggingface.co/datasets/raushan-testing-hf/videos-test/resolve/main/sample_demo_1.mp4",
}

SAMPLES_PY_DIR = Path(os.environ.get("SAMPLES_PY_DIR", os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../samples/python"))))
Expand Down
34 changes: 34 additions & 0 deletions tests/python_tests/samples/test_video_to_text_chat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# Copyright (C) 2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import os
import pytest
import subprocess # nosec B404
import sys

from conftest import SAMPLES_PY_DIR, SAMPLES_CPP_DIR, SAMPLES_C_DIR
from test_utils import run_sample

class TestVisualLanguageChat:
@pytest.mark.vlm
@pytest.mark.samples
@pytest.mark.parametrize(
"convert_model, download_test_content, questions",
[
pytest.param("tiny-random-llava-next-video", "videos/sample_video.mp4", 'What is unusual on this video?\nGo on.')
],
indirect=["convert_model", "download_test_content"],
)
def test_sample_visual_language_chat(self, convert_model, download_test_content, questions):
# Test CPP sample
cpp_sample = os.path.join(SAMPLES_CPP_DIR, 'video_to_text_chat')
cpp_command = [cpp_sample, convert_model, download_test_content]
cpp_result = run_sample(cpp_command, questions)

# Test Python sample
py_script = os.path.join(SAMPLES_PY_DIR, "visual_language_chat/video_to_text_chat.py")
py_command = [sys.executable, py_script, convert_model, download_test_content]
py_result = run_sample(py_command, questions)

# Compare results
assert py_result.stdout == cpp_result.stdout, f"Results should match"
Loading